Beilstein J. Org. Chem. 2018, 14, 1112–1119.
Table 2: Optimization of cyclization of linear heptapeptide 2.a (continued)
6c
2.0
2.0
2.0
2.0
2.0
2.0
–
N2
N2
N2
N2
N2
N2
24 h
n.d.
7
–
24 h
24 h
24 h
24 h
24 h
33 (NMR)
44 (NMR)
42 (NMR)
28 (NMR)
40 (NMR)
8d
CsCl (5 equiv)
NaCl (5 equiv)
LiCl (5 equiv)
KCl (5 equiv)
9d
10d
11d
aConditions: performed with 2 (0.05 mmol), TEA (0.15 mmol), DMF (50 mL). Unless otherwise mentioned, the adding sequence of TEA and FPID/(4-
MeOC6H4)3P was adding TEA first and FPID/(4-MeOC6H4)3P 5 minutes later. “x equiv” meant the equivalents of FPID and (4-MeOC6H4)3P. The
NMR yield was calculated by adding CH2ClBr as internal standard substance. bAdding FPID/(4-MeOC6H4)3P first and TEA 5 minutes later. c2 was
dissolved in 2 mL of DMF and added portionwise to the reaction system within 2 h. dMetal chloride was dissolved in 0.33 mL of H2O and then added
to the reaction.
4. Prasad, K. V. S. R. G.; Bharathi, K.; Haseena Banu, B.
Conclusion
Int. J. Pharm. Sci. Rev. Res. 2011, 8, 108–119.
The system of the hypervalent iodine(III) reagent FPID and
5. Dunetz, J. R.; Magano, J.; Weisenburger, G. A.
(4-MeOC6H4)3P can be applied to the solid-phase peptide syn-
thesis because four bioactive peptides were smoothly obtained
6. Yang, J.; Zhao, J. Sci. China: Chem. 2018, 61, 97–112.
including the precursor 2 of cyclic peptide pseudostellarin D.
Moreover, we have also successfully synthesized the bioactive
cyclic heptapeptide pseudostellarin D using this system.
Notably, FPID can be easily regenerated after peptide coupling
reaction in SPPS. These results, along with the successful use of
the FPID/(4-MeOC6H4)3P system in the solution-phase linear
peptide synthesis [29], show its potential in the practical appli-
cation in peptide synthesis.
7. Sheehan, J. C.; Hess, G. P. J. Am. Chem. Soc. 1955, 77, 1067–1068.
8. Gawne, G.; Kenner, G. W.; Sheppard, R. C. J. Am. Chem. Soc. 1969,
9. Carpino, L. A.; Henklein, P.; Foxman, B. M.; Abdelmoty, I.;
Costisella, B.; Wray, V.; Domke, T.; El-Faham, A.; Mügge, C.
10.Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.;
Leazer, J. L., Jr.; Linderman, R. J.; Lorenz, K.; Manley, J.;
Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007,
Supporting Information
11.Zhdankin, V. V. Hypervalent Iodine Chemistry: Preparation, Structure,
and Synthetic Applications of Polyvalent Iodine Compounds; Wiley:
New York, 2014.
Supporting Information File 1
Experimental procedures and characterization data of all
products, copies of 1H, 13C, HPLC, HRMS spectra of some
compounds.
12.Varvoglis, A. Hypervalent Iodine in Organic Synthesis; Academic
Press: London, 1997.
13.Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328–3435.
14.Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299–5358.
15.Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523–2584.
Acknowledgements
16.Singh, F. V.; Wirth, T. Chem. – Asian J. 2014, 9, 950–971.
This work was financially supported by National Key R&D
Program of China (2017YFD020030202), The National
Natural Science Foundation of China (21472094, 21172110,
21421062) and The Tianjin Natural Science Foundation
(17JCYBJC20300). We are grateful to MS. Bo Sun for the pre-
liminary investigation of this project.
17.Brown, M.; Farid, U.; Wirth, T. Synlett 2013, 24, 424–431.
18.Wirth, T. Angew. Chem., Int. Ed. 2005, 44, 3656–3665.
19.Li, Y.; Hari, D. P.; Vita, M. V.; Waser, J. Angew. Chem., Int. Ed. 2016,
20.Brand, J. P.; González, D. F.; Nicolai, S. F.; Nicolai, S.; Waser, J.
21.Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650–682.
References
1. Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606–631.
2. El-Faham, A.; Albericio, F. Chem. Rev. 2011, 111, 6557–6602.
22.Dohi, T.; Kita, Y. Chem. Commun. 2009, 2073–2085.
3. Al-Warhi, T. I.; Al-Hazimi, H. M. A.; El-Faham, A. J. Saudi Chem. Soc.
23.Duan, Y.; Jiang, S.; Han, Y.; Sun, B.; Zhang, C. Chin. J. Org. Chem.
2016, 36, 1973–1984.
1118