Enantioselective Strecker Reaction of Phosphinoyl Ketoimines
Catalyzed by in Situ Prepared Chiral N,N′-Dioxides
Jinglun Huang,† Xiaohua Liu,† Yuehong Wen,† Bo Qin,† and Xiaoming Feng*,†,‡
Key Laboratory of Green Chemistry & Technology (Sichuan UniVersity), Ministry of Education, College of
Chemistry, Sichuan UniVersity, Chengdu 610064, China, and State Key Laboratory of Biotherapy, West
China Hospital, Sichuan UniVersity, Chengdu 610041, China
ReceiVed September 28, 2006
The enantioselective Strecker reaction of N-diphenylphosphinoyl ketoimines has been achieved by use
of in situ prepared chiral N,N′-dioxide catalyst from L-piperidinamide 3f and m-chloroperoxybenzoic
acid (m-CPBA). Excellent yields (up to 99%) and high enantioselectivities (up to 92% ee) were obtained.
In particular, in situ prepared catalyst with readily available chiral material made the procedure more
convenient. Moreover, the L-piperidinamide 3f-derived N,N′-dioxide 9 could be recycled and reused at
least five times without any loss of either catalytic activity or enantioselectivity.
Introduction
catalyzed cyanations with chiral heterobimetallic complex
catalyst3 and gadolinium complex catalyst.4 Only a metal-free
chiral urea catalyst has been reported to be effective for the
aryl methyl ketoimines and t-butyl methyl ketomine.5 Then, we
expect to find another new organocatalyst, which can enanti-
oselectively catalyze the Strecker reaction of ketoimine.
Chiral N-oxide has been disclosed as having high efficiency
in many asymmetric procedures.6 We previously reported that
chiral N,N′-dioxide was a highly efficient catalyst for the
cyanation of aldimines and aldehydes with moderate to high
The Strecker reaction is one of the most attractive methods
for the synthesis of R-amino acids and their derivatives.1
Effective catalytic asymmetric cyanation of various aldimines
has been achieved, leading to efficient formation of monosub-
stituted chiral R-amino nitriles.2 However, relatively fewer
systems have been developed for catalytic asymmetric cyanation
of ketoimines, which is very useful for the generation of
quaternary R-amino acids. Reported methods include metal-
† Key Laboratory of Green Chemistry & Technology.
‡ State Key Laboratory of Biotherapy.
(3) (a) Byrne, J. J.; Chavarot, M.; Chavant, P.-Y.; Valle´e, Y. Tetrahedron
Lett. 2000, 41, 873-876. (b) Chavarot, M.; Byrne, J. J.; Chavant, P. Y.;
Valle´e, Y. Tetrahedron: Asymmetry 2001, 12, 1147-1150.
(4) (a) Masumoto, S.; Usuda, H.; Suzuki, M.; Kanai, M.; Shibasaki, M.
J. Am. Chem. Soc. 2003, 125, 5634-5635. (b) Kato, N.; Suzuki, M.; Kanai,
M.; Shibasaki, M. Tetrahedron Lett. 2004, 45, 3147-3151. (c) Kato, N.;
Suzuki, M.; Kanai, M.; Shibasaki, M. Tetrahedron Lett. 2004, 45, 3153-
3155.
(5) (a) Vachal, P.; Jacobsen, E. N. Org. Lett. 2000, 2, 867-870. (b)
Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 10012-10014.
(6) (a) Tao, B.; Lo, M. M.-C.; Fu, G. C. J. Am. Chem. Soc. 2001, 123,
353-354. (b) Denmark, S. E.; Fan, Y. J. Am. Chem. Soc. 2002, 124, 4233-
4235. (c) Shimada, T.; Kina, A.; Hayashi, T. J. Org. Chem. 2003, 68, 6329-
6337. (d) Traverse, J. F.; Zhao, Y.; Hoveyda, A. H.; Snapper, M. L. Org.
Lett. 2005, 7, 3151-3154. (e) Malkov, A. V.; Bell, M.; Castelluzzo, F.;
Kocˇovsy´, P. Org. Lett. 2005, 7, 3219-3222.
(1) Strecker, A. Ann. Chem. Pharm. 1850, 75, 27-45.
(2) (a) Iyer, M. S.; Gigstad, K. M.; Namdev, N. D.; Lipton, M. J. Am.
Chem. Soc. 1996, 118, 4910-4911. (b) Sigman, M. S.; Jacobsen, E. N.
J. Am. Chem. Soc. 1998, 120, 4901-4902. (c) Ishitani, H.; Komiyama, S.;
Kobayashi, S. Angew. Chem., Int. Ed. 1998, 37, 3186-3188. (d) Corey,
E. J.; Grogan, M. J. Org. Lett. 1999, 1, 157-160. (e) Krueger, C. A.; Kuntz,
K. W.; Dzierba, C. D.; Wirschun, W. G.; Gleason, J. D.; Snapper, M. L.;
Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 4284-4285. (f) Porter,
J. R.; Wirschun, W. G.; Kuntz, K. W.; Snapper, M. L.; Hoveyda, A. H.
J. Am. Chem. Soc. 2000, 122, 2657-2658. (g) Sigman, M. S.; Vachal, P.;
Jacobsen, E. N. Angew. Chem., Int. Ed. 2000, 39, 1279-1281. (h) Takamura,
M.; Hamashima, Y.; Usuda, H.; Kanai, M.; Shibasaki, M. Angew. Chem.,
Int. Ed. 2000, 39, 1650-1652. (i) Yet, L. Angew. Chem., Int. Ed. 2001,
40, 875-877. (j) Mansawat, W.; Bhanthumnavin, W.; Vilaivan, T.
Tetrahedron Lett. 2003, 44, 3805-3808. (k) Nakamura, S.; Sato, N.;
Sugimoto, M.; Toru, T. Tetrahedron: Asymmetry 2004, 15, 1513-1516.
(l) Huang, J.; Corey, E. J. Org. Lett. 2004, 6, 5027-5029. (m) Spino, C.
Angew. Chem., Int. Ed. 2004, 43, 1764-1766. (n) Ooi, T.; Uematsu, Y.;
Maruoka, K. J. Am. Chem. Soc. 2006, 128, 2548-2549. (o) Rueping, M.;
Sugiono, E.; Azap, C. Angew. Chem., Int. Ed. 2006, 45, 2617-2619.
(7) (a) Liu, B.; Feng, X. M.; Chen, F. X.; Zhang, G. L.; Cui, X.; Jiang,
Y. Z. Synlett 2001, 1551-1554. (b) Jiao, Z. G.; Feng, X. M.; Liu, B.; Chen,
F. X.; Zhang, G. L.; Jiang, Y. Z. Eur. J. Org. Chem. 2003, 3818-3826. (c)
Wen, Y. H.; Huang, X.; Huang, J. L.; Xiong, Y.; Qin, B.; Feng, X. M.
Synlett 2005, 2445-2448.
10.1021/jo062006y CCC: $37.00 © 2007 American Chemical Society
Published on Web 12/07/2006
204
J. Org. Chem. 2007, 72, 204-208