ORGANIC
LETTERS
2004
Vol. 6, No. 24
4619-4621
Synthesis of Primary Amines by the
Electrophilic Amination of Grignard
Reagents with 1,3-Dioxolan-2-one
O-Sulfonyloxime
Mitsuru Kitamura, Takahiro Suga, Shunsuke Chiba, and Koichi Narasaka*
Department of Chemistry, Graduate School of Science, The UniVersity of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Received October 1, 2004
ABSTRACT
Primary amines are prepared by the electrophilic amination of Grignard reagents with 4,4,5,5-tetramethyl-1,3-dioxolan-2-one O-phenylsulfonyloxime
and the acidic hydrolysis of the resulting imines.
Primary amines are an important class of compounds in
organic synthesis, which provide various nitrogen-containing
biologically active substances and fine chemicals. Generally,
primary amines are prepared by the alkylation of nucleophilic
amination reagents such as potassium phthalimidate1 or the
reduction of nitrogen-containing compounds having a nitro
or cyano group.2 Recently, transition-metal-mediated ami-
nation methods have been developed3 and are also applied
for the synthesis of primary amines.4 While the reaction of
organometallic reagents with electrophilic nitrogen reagents
such as hydroxylamine derivatives has also been developed
(electrophilic amination),5 the method is less common
compared with the former methods.
Previously, we found that the intramolecular nucleophilic
substitution on the sp2 nitrogen of oximes occurred easily
in an SN2 manner.6,7 Based on this finding, we expected to
prepare primary amines by the intermolecular substitution
on oximes with organometallic reagents because the resulting
N-alkylimines A would be easily hydrolyzed to give primary
amines (Scheme 1).
Although some aminations with oxime derivatives for the
synthesis of primary amines have been reported, these
(1) (a) Gabriel, S. Ber. Dtsch. Chem. Ges. 1887, 20, 2224. (b) Gibson,
M. S.; Bradshaw, R. W. Angew. Chem., Int. Ed. Engl. 1968, 7, 919. (c)
Johnstone, R. A. W.; Payling, D. W.; Thomas, C. J. Chem. Soc. C 1969,
2223. (d) Ragnarsson, U.; Grehn, L. Acc. Chem. Res. 1991, 24, 285.
(2) (a) House, H. O. Modern Synthetic Reactions, 2nd ed.; W. A.
Benjamin: Reading, MA, 1972. (b) Kabalka, G. W. In ComprehensiVe
Organic Synthesis; Trost, B. M., Ed.; Pergamon: Oxford, 1991; Vol. 8, p
363. (c) Hutchins, R. O.; Hutchins, M. K. In ComprehensiVe Organic
Synthesis; Trost, B. M., Ed.; Pergamon: Oxford, 1991; Vol. 8, p 25. (d)
Mitsunobu, O. In ComprehensiVe Organic Synthesis; Trost, B. M., Ed.;
Pergamon: Oxford, 1991; Vol. 6, p 65.
(3) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem.
Res. 1998, 31, 805. Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852. Hartwig,
J. F. Angew. Chem., Int. Ed. 1998, 37, 2046.
(4) Wolfe, J. P.; A° hman, J.; Sadighi, J. P.; Singer, R. A.; Buchwald, S.
L. Tetrahedron Lett., 1997, 38, 6367. Mann, G.; Hartwig, J. F.; Driver, M.
S.; Ferna´ndez-Rivas, C. J. Am. Chem. Soc. 1998, 120, 827.
(5) (a) Casarini, A.; Dembech, P.; Lazzari, D.; Marini, E.; Reginato, G.;
Ricci, A.; Seconi, G. J. Org. Chem. 1993, 58, 5620. (b) Greck, C.; Geneˆt,
J. P. Synlett 1997, 741. (c) Erdik E.; Ay, M. Chem. ReV. 1989, 89, 1947.
(d) Dembech, P.; Seconi, G.; Ricci, A. Chem. Eur. J. 2000, 6, 1281.
(6) Mori, S.; Uchiyama, K.; Hayashi, Y.; Narasaka, K.; Nakamura, E.
Chem. Lett. 1998, 111.
(7) Kusama, H.; Yamashita, Y.; Narasaka, K. Chem. Lett. 1995, 5.
Kusama, H.; Uchiyama, K.; Yamashita, Y.; Narasaka, K. Chem. Lett. 1995,
715. Kusama, H.; Yamashita, Y.; Uchiyama, K.; Narasaka, K. Bull. Chem.
Soc. Jpn. 1997, 70, 965. Uchiyama, K.; Yoshida, M.; Hayashi, Y.; Narasaka,
K. Chem. Lett. 1998, 607. Yoshida, M.; Uchiyama, K.; Narasaka, K.
Heterocycles 2000, 52, 681. Kitamura, M.; Yoshida, M.; Kikuchi, T.;
Narasaka, K. Synthesis 2003, 2415. Tanaka, K.; Mori, Y.; Narasaka, K.
Chem. Lett. 2004, 33, 26.
10.1021/ol0479951 CCC: $27.50
© 2004 American Chemical Society
Published on Web 10/27/2004