(45 ml). The reaction mixture was stirred for 50 h at ambient
temperature under nitrogen. The solution was evaporated under
reduced pressure, the residue partitioned between ethyl acetate
(100 ml) and water (150 ml). The organics were separated,
washed with 5% aqueous NaHCO3 solution (100 ml), dried
(MgSO4) and evaporated under reduced pressure to leave a crude
product which was purified by column chromatography, eluting
with 40% EtOAc in petrol to yield the alcohol 46 (1.65 g, 88%)
as a red foam, RF 0.17 (30% EtOAc in petrol); (Found: C, 72.5;
H, 6.35; N, 6.3; C38H39N3O4Si requires C, 72.5; H, 6.2; N, 6.7%);
mmax/cm−1 (film) 3417 (br), 2954, 2873, 1697, 1610 and 1532; dH
(500 MHz; CDCl3) 7.82 (1H, s, indole 2-H or 2-H), 7.62 (1H,
s, indole 2-H or 2-H), 7.53–7.12 (10H, m), 6.85–6.80 (3H, m),
6.14 (1H, d, J 5.4 Hz, cp 2-H or 3-H), 5.97 (1H, d, J 5.4 Hz, cp
2-H or 3-H), 5.52 (2H, s, NCH2O), 5.36–5.32 (1H, m, cp 1-H or
4-H), 4.87 (2H, s, CH2Ph), 4.84–4.80 (1H, m, cp 1-H or 4-H),
3.54 (2H, t, J 8.0 Hz, OCH2CH2Si), 3.05 (1H, m, cp 5-Ha/b), 1.69
(2H, m, cp 5-Ha/b and OH (br)), 0.94 (2H, t, J 8.0 Hz, CH2SiMe3)
and 0.00 (9H, s, SiMe3) ppm; dC (75 MHz; CDCl3) 173.3, 173.2,
139.6, 138.4, 137.3, 133.7, 133.4, 130.8, 130.2, 130.0, 128.9,
127.5, 123.9, 123.9, 123.8, 123.6, 121.9, 121.9, 111.7, 111.0, 78.6,
77.5, 76.6, 67.5, 60.9, 43.2, 43.1, 40.1, 31.7, 30.2, 24.3, 19.1, 15.4
and −0.7 ppm; m/z (ES) 653 (100%, MNa+).
OCOCH3) and 1.95–1.87 (1H, m, cp 5-Ha/b) ppm; m/z (ES) 564
(50%, MNa+), 483 (100%, M − OAc); found MNa+ 564.1889;
C34H27N3O4Na requires M+ 564.1899.
19-Benzyl-6,7,10,11-tetrahydro-5,21:12,17-dimethenodibenzo[i,o]-
pyrrolo[3,4-l]-[1,8]diazacyclohexadecene-18,20(19H)-dione 59
Grubbs’ second generation catalyst 58 (7 mg, 5 mol%) was
added to a stirred solution of the diene 33d (86 mg, 0.16 mmol)
in CDCl3 (2 ml). The reaction mixture was stirred for 6 h and
followed by NMR spectroscopy. On completion the reaction
mixture was preabsorbed onto silica and the product isolated by
column chromatography, eluting with 0–30% EtOAc in petrol to
yield the macrocyclic compound 59 (60 mg, 74%) as a purple film
RF 0.25 (30% EtOAc in petrol); dH (500 MHz; CDCl3) 7.98 (2H,
d, J 7.3 Hz, indole 4-H), 7.53 (2H, d, J 7.0 Hz, o-Ph), 7.21–7.38
(9H, m, m-Ph, p-Ph, indole 7-H, indole 5-H and indole 6-H),
6.79 (2H, s, indole 2-H), 5.12 (2H, t, J 4.0 Hz, CHCH), 4.87
(2H, s, NCH2Ph), 4.06–4.02 (4H, m, NCH2CH2) and 2.48–2.45
(4H, m, NCH2CH2) ppm; dC (125 MHz; CDCl3) 171.2 (CO),
137.2, 135.7, 131.1, 130.2 (CHCH), 129.7 (indole 2-C),
128.8 (Ph-C), 128.6 (Ph-C), 127.6 (Ph-C), 127.1, 122.3 (indole
4-C), 122.2, 120.9, 109.1 (indole 7-C), 104.3 (indole 3-C), 45.8
(NCH2CH2), 41.7 (NCH2Ph) and 33.7 (NCH2CH2) ppm; m/z
(ES) 498 (100%, MH+); found MH+ 498.2162; C33H28N3O2
requires M+ 498.2182.
Acetic acid (1R*,4S*)-4-(3-{1-benzyl-2,5-dioxo-4-{1-[2-
(trimethylsilyl)ethoxymethyl]-1H-indol-3-yl}-2,5-dihydro-1H-
pyrrol-3-yl}indol-1-yl)cyclopent-2-enyl ester 47
Acknowledgements
Acetic anhydride (1.2 ml) was added to a solution of the alcohol
46 (1.62 g, 2.58 mmol), in pyridine (12 ml). The reaction mixture
was stirred at ambient temperature under nitrogen for 4 h. The
mixture was diluted with ether (50 ml), washed with HCl (3 M,
3 × 50 ml), saturated aqueous NaHCO3 solution (3 × 50 ml) and
brine (50 ml). The organics were dried (MgSO4) and evaporated
under reduced pressure to leave the acetate 47 (1.63 g, 94%) as
a red foam RF 0.8 (50% EtOAc in petrol); (Found: C, 70.8; H,
6.15; N, 6.2; C40H41N3O5Si requires C, 71.5; H, 6.15; N, 6.3%);
mmax/cm−1 (film) 3060, 2956, 1720, 1698, 1530 and 1398; dH
(500 MHz; CDCl3) 7.82 (1H, s, indole 2-H or 2-H), 7.74 (1H, s,
indole 2-H or 2-H), 7.52–7.28 (7H, m), 7.13–7.04 (3H, m), 6.86–
6.76 (3H, m), 6.23 (1H, d, J 5.4 Hz, cp 2-H or 3-H), 6.12 (1H,
d, J 5.4 Hz, cp 2-H or 3-H), 5.71–5.67 (1H, m, cp 1-H or 4-H),
5.53 (2H, s, NCH2O), 5.45 (1H, m, cp 1-H or 4-H), 4.88 (2H, s,
CH2Ph), 3.54 (2H, t, J 8.0 Hz, OCH2CH2SiMe3), 3.13 (1H, m,
cp 5-Ha/b), 2.10 (3H, s, OCOCH3), 1.92 (1H, m, cp 5-Ha/b), 0.94
(2H, t, J 8.0 Hz, CH2SiMe3) and 0.00 (9H, s, SiMe3) ppm; m/z
(ES) 694 (100%, MNa+); found MH+ 672.2910; C40H42N3O5Si
requires M+ 672.2894.
We thank EPSRC for a project studentship, Stuart Warriner
and Andrew Leach for helpful discussions, and Colin Kilner for
determining the structure of the bisindole 20.
References
1 For a reviews, see: (a) U. T. Rueegg and G. M. Burgess, Trends
Pharm. Sci., 1989, 10, 218; (b) S. Omura, Y. Sasaki, Y. Iwai and
H. Takeshima, J. Antibiot., 1995, 48, 535.
2 (a) R. A. Bit, P. D. Davis, L. H. Elliott, W. Harris, C. H. Hill,
E. Keech, G. Kumar, A. Maw, J. S. Nixon, D. R. Vessey,
J. Wadsworth and S. E. Wilkinson, J. Med. Chem., 1993,
36, 21; (b) D. Toullec, P. Pianetti, H. Coste, P. Bellevergue,
T. Grand-Perret, M. Ajakane, V. Baudet, P. Boissin, E. Boursier,
F. Loriolle, L. Duhamel, D. Charon and J. Kirilovsky, J. Biol. Chem.,
1991, 266, 15771; (c) M. R. Jirousek, J. R. Gillig, C. M. Gonzalez,
W. F. Heath, J. H. McDonald, III, D. A. Neel, C. J. Rito, U. Singh,
L. E. Stramm, A. Melikian-Badalian, M. Baevsky, L. M. Ballas,
S. E. Hall, L. L. Winneroski and M. M. Faul, J. Med. Chem., 1996,
39, 2664; (d) W. F. Heath, Jr, M. R. Jirousek, J. H. McDonald,
III and C. J. Rito, Eur. Pat. Appl., 657458, 1995; (e) W. F. Heath,
Jr, M. R. Jirousek, J. H. McDonald, III and C. J. Rito, US Pat.,
5,624,949, 1997, Eli Lilly and Company.
3 K. J. Way, N. Katai and G. L. King, Diabetic Med., 2001, 18, 945.
4 For example, see: T. Yamaguchi, K. Uchida and M. Irie, J. Am.
Chem. Soc., 1997, 119, 6066.
5 See also: M. M. Faul and C. A. Krumrich, J. Org. Chem., 2001, 66,
2024.
Acetic acid (1R*,4S*)-4-{3-[1-benzyl-4-(1H-indol-3-yl)-2,5-dioxo-
2,5-dihydro-1H-pyrrol-3-yl]indol-1-yl}cyclopent-2-enyl ester 48
Tris(dimethylamino)sulfur (trimethylsilyl) difluoride (TASF)
(220 mg, 0.8 mmol), was added to a solution of SEM protected
bisindolylmaleimide 47 (400 mg, 0.6 mmol) in THF (10 ml), and
heated at reflux for 70 h. The reaction mixture was diluted with
ethyl acetate (80 ml) and washed with water (50 ml), 5% aqueous
NaHCO3 solution (50 ml) and brine (50 ml). The combined
aqueous layers were extracted with ethyl acetate (50 ml). The
organics were dried (MgSO4) and evaporated under reduced
pressure to leave a crude product which was purified by column
chromatography, eluting with 30–40% EtOAc in petrol to yield
the bisindolylmaleimide 48 (136 mg, 42%) as a red foam RF 0.45
(50% EtOAc in petrol); mmax/cm−1 (film) 3060, 2922, 2851, 2241,
1755, 1693 and 1610; dH (500 MHz; CDCl3) 8.67 (1H, br s, NH),
7.68 (1H, d, J 2.7 Hz, indole 2-H), 7.66 (1H, s, indole 2-H),
7.47–7.03 (10H, m), 6.89 (1H, d, J 8.1 Hz), 6.78 (1H, t, J 7.5 Hz),
6.73 (1H, t, J 7.9 Hz), 6.16 (1H, dt, J 5.6 and 2.0 Hz, cp 2-H or
3-H), 6.07 (1H, dt, J 5.6 and 0.9 Hz, cp 2-H or 3-H), 5.67–5.62
(1H, m, cp 1-H or 4-H), 5.39–5.32 (1H, m, cp 1-H or 4-H), 4.84
(2H, s, NCH2Ph), 3.14–3.04 (1H, m, cp 5-Ha/b), 2.03 (3H, s,
6 M. Petrini, R. Ballini and E. Marcantoni, Synth. Commun., 1988,
18, 847.
7 (a) S. C. Shim, Y. Z. Youn, D. Y. Lee, T. J. Kim, C. S. Cho,
S. Uemura and Y. Watanabe, Synth. Commun., 1996, 26, 1349;
(b) R. C. Larock, E. K. Yum and M. D. Refvik, J. Org. Chem., 1998,
63, 7652.
8 S. L. Schreiber and C. S. Poss, Acc. Chem. Res., 1994, 27, 9.
9 T. T. Curran, D. A. Hay and C. P. Koegel, Tetrahedron, 1997, 53,
1983.
10 K. Karabelas, M. Lepisto and P. Sjo, ‘New pharmaceutically active
compounds’, WO 00/71537, 2000.
11 J. R. Gillig and M. R. Jirousek, ‘Synthesis of Bisindolylmaleimides’,
US Pat., 5,559,228, 1996, Eli Lilly and Company.
12 M. M. Faul, L. L. Winneroski and C. A. Krumrich, J. Org. Chem.,
1998, 63, 6053.
13 I. M. Downie, M. J. Earle, H. Heaney and K. F. Shuhaibar, Tetra-
hedron, 1993, 49, 4015.
14 (a) H. Blank, P. Reinecke, W. Brandes, G. Marzolph, and
H. Scheinpflug, ‘Substituted Maleimides and their Pesticidal Use’,
US Pat., 4,582,849, 1983, p. 45; (b) T. Kaneko and H. Wong, Tetra-
hedron Lett., 1985, 26, 4015.
2 8 8 2
O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 2 8 7 4 – 2 8 8 3