10.1002/chem.201702892
Chemistry - A European Journal
COMMUNICATION
[11] a) A. Shavnya, S. B. Coffey, A. C. Smith, V. Mascitti, Org. Lett. 2013, 15,
6226-6229; b) A. Shavnya, K. D. Hesp, V. Mascitti, A. C. Smith, Angew.
Chem. 2015, 127, 13775-13779; Angew. Chem. Int. Ed. 2015, 54,
13571-13575.
due to leaching processes (Figure 3). The crude TEM of our
standard catalytic system (PdCl2 and ligand 1), showed Pd
clusters of 0.8 nm of average size, with around 14 Pd atoms. 25 In
such small particles, the electronic structure seems to play a key
role, with high surface area/volume ratio explaining its higher
activity. This can be correlated with the reaction order obtained
for PdCl2, which was found to be 0.25, suggesting maybe that only
¼ of the Pd atoms are catalytically active, which means that in a
14-atom palladium cluster, only around 3 atoms have catalytic
activity.22
[12] M. W. Johnson, S. W. Bagley, N. P. Mankad, R. G. Bergman, V. Mascitti,
F. D. Toste, Angew. Chem. 2014, 126, 4493-4496; Angew. Chem. Int.
Ed. 2014, 53, 4404-4407.
[13] a) D. Wang, R. Zhang, S. Lin, Z. Yan, S. Guo, RSC Adv. 2015, 5, 108030-
108033; b) F. Xiao, S. Chen, J. Tian, H. Huang, Y. Liu, G.-J. Deng, Green
Chem. 2016, 18, 1538-1546; c) Y. Yang, W. Li, C. Xia, B. Ying, C. Shen,
P. Zhang, ChemCatChem 2016, 8, 304-307.
[14] E. L. Smith, A. P. Abbot, K. S. Ryder, Chem. Rev., 2014, 114, 11060-
11082.
Conclusions
[15] a) Q. Zhang, K. D. O. Vigier, S. Royer, F. Jérôme, Chem. Soc. Rev.,
2012, 41, 7108-7146; b) J. García-Álvarez, Eur. J. Inorg. Chem. 2015,
5147-5157; c) D. A. Alonso, A. Baeza, R. Chinchilla, G. Guillena, I. M.
Pastor, D. J. Ramón, Eur. J. Org. Chem. 2016, 612-632
In conclusion, DES, PdCl2 and ligand 1 can be efficiently
applied to the jigsaw synthesis of molecules containing new C-S
bonds, starting from aryl boronic acids and sodium metabisulfite,
which undergo subsequent transformations in one-pot manner,
reacting with nucleophiles, electrophiles and radical scavengers
to afford sulfones and aryl sulfides. Furthermore, the catalytic
system could be recycled up to three times without a decrease in
the yield of the reaction. The high activity seems due to the very
small size of nanoparticles but not to the shape.
[16] a) N. Azizi, E. Batebi, Catal. Sci. Technol. 2012, 2, 2445–2448; b) N.
Azizi, Z. Yadollahy, A. Rahimzadeh-Oskoo, Tetrahedron Lett. 2014, 55,
1722-1725; c) G. Dilauro, L. Cicco, F. M. Perna, P. Vitale, V. Capriati, C.
R. Chimie, 2017, DOI: 10.1016/j.crci.2017.01.008.
[17] X. Marset, A. Khoshnood, L. Sotorríos, E. Gómez-Bengoa, D. A. Alonso,
D. J. Ramón, ChemCatChem; 2016, Accepted Article, DOI:
10.1002/cctc.201601544.
[18]
C. C. C. Johansson Seechurn, T. Sperger, T. G. Scrase, F.
Schoenebeck, T. J. Colacot, J. Am. Chem. Soc. 2017, 139, 5194-5200.
[19] D. Prat, O. Pardigon, H.-W. Flemming, S. Letestu, V. Ducandas, P.
Isnard, E. Guntrum, T. Senac, S. Ruisseau, P. Cruciani, P. Hosek, Org.
Process. Res. Dev. 2013, 17, 1517-1525.
Acknowledgements
This work was supported by the University of Alicante
(UAUSTI16-10, VIGROB-173), and the Spanish Ministerio de
Economía, Industria y Competitividad (CTQ2015-66624-P). XM
thanks Generalitat Valenciana (ACIF/2016/057) for fellowship.
[20] For selected examples see: a) S. Liang, R.-Y. Zhang, L.-Y. Xi, S.-Y. Chen,
X.-Q. Yu, J. Org. Chem. 2013, 78, 11874-11880; b) G. Rong, J. Mao, H.
Yan, Y. Zheng, G. Zhang, J. Org. Chem. 2015, 80, 7652-7657; c) J.
Maesin, P. Katrun, C. Pareseecharoen, M. Pohmakotr, V. Reutrakul, D.
Soorukram, C. Kuhakarn, J. Org. Chem. 2016, 81, 2744-2752.
[21] S. Oae, H. Togo, Bull. Chem. Soc. Jpn. 1983, 56, 3813-3817.
[22] J. Burés, Angew. Chem. 2016, 128, 2068-2071; Angew. Chem. Int. Ed.
2016, 55, 2028-2031.
Keywords: Green Chemistry • Palladium • Solvent Effects •
Sulfur • Multicomponent Reactions
[23] C. Amatore, A. Jutand, J. Organomet. Chem. 1999, 576, 254-278.
[24] G. Collins, M. Schmidt, C. O’Dwyer, J. D. Holmes, G. P. McGlacken,
Angew. Chem. 2014, 126, 4226-4229; Angew. Chem. Int. Ed. 2014, 53,
4142-4145.
[1]
[2]
[3]
[4]
[5]
P. T. Anastas, J. C. Warner in Green Chemistry: Theory and Practice
(Eds.: Oxford University Press), New York, 1998, p.30.
T. J. J. Müller in Multicomponent Reactions (Ed. Science of Synthesis),
Stuttgart, 2014.
[25] D. J. Lewis, T. M. Day, J. V. MacPherson, Z. Pikramenou, Chem.
Commun. 2006, 1433-1435.
C. J. O’Connor, H. S. G. Beckman, D. R. Spring, Chem. Soc. Rev. 2012,
41, 4444-4456.
D. Bonne, T. Constantineux, Y. Coquerel, J. Rodriguez, Chem. Eur. J.
2013, 19, 2218-2231.
For selected examples see: a) S. Patai, Z. Rappoport, C. Stirling, in
Sulphones and Sulphoxides. Ed. John Wiley and Sons Ltd, Chichester,
1988. b) C. R. Craig,R. E. Stitzel, in Modern Pharmacology with Clinical
Applications. Ed. LWW, Hagerstwon, 2004.
[6]
[7]
[8]
A. El-Awa, M. N. Noshi, X. Mollat du Jourdin, P. L. Fuschs, Chem. Rev.
2009, 109, 2315-2349.
K. Sato, M. Hyodo, M. Aoki, X.-Q. Zheng, R. Noyori, Tetrahedron 2001,
57, 2469-2476.
a) K. Yang, M. Ke, Y. Lin, Q. Song, Green Chem. 2015, 17, 1395-1399;
b) A. Rodríguez, W. J. Moran, J. Org. Chem. 2016, 81, 2543-2548; c)
Y.Gao, Y. Gao, X. Tang, J. Peng, M. Hu, W. Wu, H. Jiang, Org. Lett.
2016, 18, 1158-1161.
[9]
G. Pelzer, J. Herwig, W. Keim, R. Goddard, Russ. Chem. B+ 1998, 47,
904-912.
[10] a) H. Woolven, C. González-Rodríguez, I. Marco, A. L. Thomson, M. C.
Willis, Org. Lett. 2011, 13, 4876-4878; b) S. Ye, J. Wu, Chem. Commun.
2012, 48, 7753-7755; c) S. Ye, H. Wang, Q. Xiao, Q. Ding, J. Wu, Adv.
Synth. Catal. 2014, 356, 3225-3230;d) B. N. Rocke, K. B. Bahnck, M.
Herr, S. Lavergne, V. Mascitti, C. Perreault, J. Polivkova, A. Shavnya,
Org. Lett. 2014, 16, 154-157; e) G. Liu, C. Fan, J. Wu, Org. Biomol. Chem.
2015, 13, 1592-1599; f) A. S. Deeming, C. J. Russell, M. C. Willis, Angew.
Chem. 2016, 128, 757-760; Angew. Chem. Int. Ed. 2016, 55, 747-750.
This article is protected by copyright. All rights reserved.