1354
J. Zhang et al. / Bioorg. Med. Chem. Lett. 10 (2000) 1351±1355
its replacement by a CH3 group (26) had the opposite
eect (IC50s of 25 decreased while those of 26 increased,
both by one order of magnitude). This could be either due
to the low lipophilicity of this methyl or to its electron-
donating eect which, in contrast to the CF3 group,
favours the keto- over the enol-form, as con®rmed by
NMR and IR spectra analysis.15 Compound 27 with a
more lipophilic 4-methoxybenzyl group, despite the
predominance of the keto-form, displayed better a-
nities than the methyl analogue 26, but nevertheless
lower anities than compound 5. Compound 28, with a
lipophilic phenyl group which at the same time favours
the enol-form by conjugation eect, displayed better
anities than compound 5. Introduction of a nitro
group at the 4-position of this phenyl decreased the
binding anities, probably by repulsive eect between
the dipole of the NO2 group and the ET receptors.
These studies clearly indicated, not only the crucial role
of the substituent at the 3 position of the pyrazole ring,
but also the importance of its liphophilic properties.
They also highlighted the in¯uence of their inductive
eects on the acidity of the hydroxyl at the 5 position.
Therefore, they con®rmed our initial hypothesis on the
existence of a strong and speci®c ionic interaction
between the hydroxy and the ET receptors.
The pyrazole-5-carboxylic acid 37a displayed 10-fold
improved ETA and nearly 100-fold improved ETB
binding anity compared to the corresponding pyrazol-
5-ol 28. Introduction of the 6-chloropiperonyl, which
was shown to be the best substituent in the pyrazol-5-ol
series, gave the most potent pyrazole-5-carboxylic acid
37b. These encouraging results were in complete agree-
ment with our pharmacophore model obtained from the
SAR studies of the pyrazol-5-ols. Additional results
concerning this novel class of ET antagonists will be
communicated in due course.
Acknowledgements
We would like to thank the Analytical Department
(HMR, Romainville) for performing the spectral analysis.
References and Notes
1. (a) Yanagisawa, M.; Kurihara, H.; Kimura, H.; Tomobe, Y.;
Kobayashi, M.; Mitsui, Y.; Goto, K.; Masaki, T. Nature 1988,
332, 411. (b) Doherty, A. M. J. Med. Chem. 1992, 35, 1493.
2. (a) Kosaka, T.; Suziki, N.; Matsumoto, H.; Itoh, Y.; Yasu-
hara, T.; Onda, H.; Fujino, M. FEBS Lett. 1989, 249, 42. (b)
Ehrenreich, H.; Anderson, R. W.; Fox, C. H.; Rieckmann, P.;
Homann, G. S.; Travis, W. D.; Coligan, J. E.; Kehrl, J. H.;
Fauci, A. S. J. Exp. Med. 1990, 172, 1741. (c) Shichiri, M.;
Hirata, Y.; Nakajima, T.; Ando, K.; Imai, T.; Yanagisawa,
M.; Masaki, T.; Marumo, F. J. Clin. Invest. 1991, 87, 1867.
3. (a) Arai, H.; Hori, S; Aramori, I.; Ohkubo, H.; Nakanishi,
S. Nature 1990, 348, 730. (b) Sakurai, T.; Yanagisawa, M.;
Takuwa, Y.; Miyazaki, H.; Kimura, S.; Goto, K.; Masaki, T.
Nature 1990, 348, 732.
From these SAR studies, four structural features on the
pyrazole ring were identi®ed as key requirements for the
ET receptor binding: an acidic functionality ¯anked by
two benzyl groups (one of them being piperonyl), and a
hydrophobic substituent located next to the piperonyl.
Based on this pharmacophore hypothesis, we synthe-
sized two pyrazole-5-carboxylic acids 37a,b (Table 5)
(Scheme 3).
4. (a) Ihara, M.; Noguchi, K; Saeki, T.; Fukuroda, T.; Tsu-
chida, S.; Kimura, S.; Fukami, T.; Ishikawa, K.; Nishikibe,
M.; Yano, M. Life Sci. 1992, 50, 247. (b) Sumner, M. J.;
Canon, T. R.; Mundin, J. W.; White, D. C.; Watts, I. S. Br. J.
Pharmacol. 1992, 107, 858.
Table 5. In vitro endothelin receptor binding anity (IC50 (mM)) for
compounds 37a,b
5. (a) Clozel, M.; Gray, G. A.; Breu, W.; Loer, B.-M;
Osterwalder, R. Biochem. Biophys. Res. Commun. 1992, 186,
867. (b) Moreland, S.; McMullen, D. M.; Delaney, C. L.; Lee,
V. G.; Hunt, J. T. Biochem. Biophys. Res. Commun. 1992, 184,
100. (c) Warner, T. D.; Allcock, G. H.; Corder, R.; Vane, J. R.
Br. J. Pharmacol. 1993, 110, 777.
No.
R
IC50 (mM)
a
b
ETA
ETB
37a
37b
H
Cl
0.028
0.018
0.040
0.034
6. For reviews, see (a) Naylor, W. Trends Pharmacol. Sci.
1990, 11, 96. (b) Filep, J. G. Life Sci. 1993, 52, 119.
7. Dao, H. H.; Moreau, P. Expert Opin. Invest. Drugs 1999, 8,
1807.
aRat heart ventricles.
bRat cerebellum.
8. (a) Clozel, M.; Breu, V.; Burri, K.; Cassal, J. M.; Fischli, W.;
Gray, G. A.; Hirth, G.; Loeer, B. M.; Mueller, M.; Neidhart,
W.; Ramuz, H. Nature 1993, 365, 759. (b) Elliott, J. D.; Lago, M.
A.; Cousins, R. D.; Gao, A.; Leber, J. D.; Erhard, K. F.; Nambi,
P.; Elshourbagy, N. A.; Kumar, C.; Lee, J. A.; Bean, J. W.;
Debrosse, C. W.; Eggleston, D. S.; Brooks, D. P.; Feuerstein,
E. H. J. Med. Chem. 1994, 37, 1553. (c) Stein, D.; Floyd, D. M.;
Bisaha, S.; Dickey, J.; Girotra, R. N.; Gougoutas, J. Z.;
Kozlowski, M.; Lee, Ving G.; Liu, E. C.-K.; Malley, M. F.;
McMullen, D.; Mitchell, C.; Moreland, S.; Murugesan, N.;
Sera®no, R.; Webb, M. L.; Zhang, R.; Hunt, J. T. J. Med. Chem.
1995, 38, 1344. (d) Doherty, A. M.; Patt, W. C.; Edmunds, J. J.;
Berryman, K. A.; Reisdorph, B. R.; Plummer, M. S.; Shahripour,
A.; Lee, C.; Cheng, X.-M.; Walker, D. M.; Haleen, S. J.; Keiser,
J. A.; Flynn, M. A.; Welsh, K. M.; Hallak, H.; Taylor, D. G.;
Reynolds, E. E. J. Med. Chem. 1995, 38, 1259. (e) Walsh, T. F.;
Fitch, K. J.; Williams, D. L., Jr.; Murphy, K. L.; Nolan, N. A.;
Scheme 3. Reagents and conditions: (a) NH2NH2.H2O, EtOH, re¯ux;
(b) NBS, CH2Cl2, rt; (c) 3-MeO-PhCH2Cl, NaH, DMF, rt; (d)
(Bu3Sn)2, Pd(PPh3)4, toluene, re¯ux; (e) Pd2(dba)3CHCl3-(dppf),
DMF, 60 ꢀC; (f) NaOH (2N), EtOH.