T. Durst, Tetrahedron, 1997, 53, 15969; (g) A. Roy, K. R. Reddy,
H. Ila and H. Junjappa, J. Chem. Soc., Perkin Trans. 1, 1999,
3001.
The mixture was stirred for 5 h, filtered and 15 ml of the solvent
evaporated under reduced pressure and the residue purified by
column chromatography on silica gel with ether. The product
18b was recrystallized from ether–pentane to give 340 mg (93%)
of yellow crystals with mp 114 ЊC.
11 Furo[3,4-b]benzofurans have been reported only occasionally: (a)
A. Shafiee and E. Behnam, J. Heterocycl. Chem., 1978, 15, 1459;
(b) W. Eberbach, N. Laber, J. Bussenius and G. Rihs, Chem. Ber.,
1993, 126, 975.
12 C. F. Koelsch, J. Am. Chem. Soc., 1945, 67, 569.
13 M. Regitz and G. Maas, Diazo Compounds, Academic Press,
Orlando, 1986.
14 J. B. Hendrickson and W. A. Wolf, J. Org. Chem., 1968, 33, 3610.
This reagent is especially suitable for diazo group transfer reactions,
as the 4-sulfamoylbenzoic acid can be separated quite easily from
the reaction mixture.
15 (a) M. Hamaguchi and T. Ibata, Chem. Lett., 1976, 287; (b) O. Peters
and W. Friedrichsen, in Trends in Heterocyclic Chemistry, Trivan-
drum, 1995, vol. 4, p. 217; (c) T. K. Sarkar, S. K. Ghosh, S. K.
Nandy and T. J. Chow, Tetrahedron Lett., 1999, 40, 397.
16 U. Pindur, G. Lutz and C. Otto, Chem. Rev., 1993, 93, 741.
17 Although 2 regioisomers (8 [C2h] and the corresponding Ci-isomer)
are conceivable according to the 13C NMR structure 8 is preferred
(see Experimental section).
νmax/cmϪ1 2112 (s), 1713 (s), 1574 (m), 1443 (m), 1281 (s),
1162 (m), 748 (m); λmax(CH3CN)/nm (log ε) 295 (1.011), 224
(sh, 3.273), 260 (3.330), 295 (3.154), 400 (1.398); δH(300 MHz;
CDCl3) 4.02 (s, 3H, CO2CH3), 4.79 (td, 2H, O-CH2, J1 1.33,
J 5.75), 5.25–5.50 (2m, 2H, CH᎐CH ), 5.97 (ddt, 1H, CH᎐
᎐
᎐
2
2
CH2, J1 5.77, J2 11.28, J3 16.36), 7.34 (ddd, 1H, C5-H, J1 1.05,
J2 7.02, J3 8.02), 7.50 (ddd, 1H, C6-H, J1 1.30, J2 7.05, J3 8.38),
7.58 (d, 1H, C7-H, J 8.85), 7.71 (d, 1H, C4-H, J 7.74); δC(75
MHz; CDCl3) 52.64 (q, CO2CH3), 65.99 (t, O-CH2), 66.16 (s,
CN ), 112.36 (s, C3), 113.83 (ddd, C7), 118.74 (t, CH᎐CH ),
᎐
2
2
123.41 (dd, C4), 123.86 (dd, C5), 126.68 (s, C3a), 128.54 (dd,
C6), 131.87 (ddd, CH᎐CH ), 139.02 (s, C2), 154.67 (s, C7a),
᎐
2
159.41 (s, C3-CH2-CO2CH2), 164.38 (s, C2-CO2CH3).
18 (a) A. Hosomi and Y. Tominaga, in Comprehensive Organic
Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford,
1995, vol. 5, ch. 5.1; (b) M. Harmata, in Advances in Cycloadditions,
ed. M. Lautens, JAI Press, Greenwich, Com., 1996, vol. 4; (c) M.
Harmata, Tetrahedron, 1997, 53, 6235.
Acknowledgements
The continuous support of our work by the Deutsche
Forschungsgemeinschaft and the Fonds der Chemischen
Industrie is gratefully acknowledged.
19 Recent work: (a) R. Dunkel, M. Mentzel and H. M. R. Hoffmann,
Tetrahedron, 1997, 53, 14929; (b) A. M. Montaña, S. Ribes, P. M.
Grima and F. García, Chem. Lett., 1997, 847; (c) M. Harmata and
D. E. Jones, J. Org. Chem., 1997, 62, 1578; (d) M. Harmata and M.
Kahraman, Tetrahedron Lett., 1998, 39, 3421; (e) M. Harmata
and L. Shao, Synthesis, 1999, 1534; ( f ) A. M. Montaña and D.
Fernández, Tetrahedron Lett., 1999, 40, 6499; (g) S. Y. Cho, J. C. Lee
and J. K. Cha, J. Org. Chem., 1999, 64, 3394; (h) S. Sendelbach, R.
Schwetzler-Raschke, A. Radl, R. Kaiser, G. H. Henle, H. Korfant,
S. Reiner and B. Fölisch, J. Org. Chem., 1999, 64, 3398; (i) S. Reck,
C. Näther and W. Friedrichsen, Heterocycles, 1999, in press.
20 The literature of intramolecular Diels–Alder reactions is extensive.
For reviews and examples see ref. 21.
21 (a) W. Oppolzer, Angew. Chem., 1977, 89, 10; Angew. Chem., Int. Ed.
Engl., 1977, 16, 10; (b) G. Brieger and J. N. Bennett, Chem. Rev.,
1980, 80, 63; (c) G. Desimoni, G. Tacconi, A. Barco and G. P.
Pollini, Natural Products Synthesis Through Pericyclic Reactions,
American Chemical Society, ACS Monograph 180, Washington,
1983; (d) E. Ciganek, Org. React., 1984, 32, 1; (e) A. G. Fallis, Can.
J. Chem., 1984, 62, 183; ( f ) D. F. Taber, Intramolecular Diels–Alder
and Alder Ene Reactions, Reactivity and Structure, Concepts in
Organic Chemistry, Springer-Verlag, Berlin, 1984, vol. 18; (g) J. D.
Winkler, Chem. Rev., 1996, 96, 167; (h) D. Craig, in Methods
of Organic Synthesis (Houben-Weyl ), ed. G. Helmchen, R. W.
Hoffmann, J. Mulzer and E. Schaumann, Thieme Verlag, Stuttgart,
1995, vol. E21c, p. 2872; (i) W. R. Roush, in Comprehensive Organic
Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford,
1991, vol. 5, p. 513. For the phrase “tandem” see also L. F. Tietze,
Chem. Rev., 1996, 36, 115, footnote 3; (j) A. Padwa, M. A. Brodney
and M. Dimitroff, J. Org. Chem., 1998, 63, 5304; (k) G. Himbert
and H. Schlindwein, Liebigs Ann./Recl., 1997, 435; (l) C. O. Kappe,
S. S. Murphree and A. Padwa, Tetrahedron, 1997, 53, 14179; (m)
N. Choony, A. Dadabhoy and P. G. Sammes, Chem. Commun.,
1997, 513; (n) A. Padwa, M. A. Brodney, K. Satake and C. S. Straub,
J. Org. Chem., 1999, 64, 4167; E. J. Bush, D. W. Jones and
F. M. Nongrum, J. Chem. Soc., Chem. Commun., 1994, 2145;
(o) D. W. Jones and F. M. Nongrum, J. Chem. Soc., Perkin Trans. 1,
1996, 705.
References
1 (a) A. Mustafa, in The Chemistry of Heterocyclic Compounds, ed.
A. Weissberger and E. C. Taylor, Wiley, New York, 1974, vol. 29;
(b) F. M. Dean and M. V. Sargent, in Comprehensive Heterocyclic
Chemistry, ed. A. R. Katritzky and C. W. Rees, Pergamon Press,
Oxford, 1984, vol. 4, p. 531; (c) M. V. Sargent and F. M. Dean, in
Comprehensive Heterocyclic Chemistry, ed. A. R. Katritzky and
C. W. Rees, Pergamon Press, Oxford, 1984, vol. 4, p. 599; (d)
D. M. X. Donelly and M. J. Meegan, in Comprehensive Heterocyclic
Chemistry, ed. A. R. Katritzky and C. W. Rees, Pergamon Press,
Oxford, 1984, vol. 4, p. 657; (e) R. Röhrkasten and M. Konrad, in
Methoden Org. Chem. (Houben-Weyl), ed. R. Kreher, Thieme
Verlag, Stuttgart, 1994, vol. E6b1, p. 33.
2 (a) W. Friedrichsen, Adv. Heterocycl. Chem., 1999, 73, 1; (b)
T. Traulsen and W. Friedrichsen, in Targets in Heterocyclic Systems.
Chemistry and Properties, ed. O. A. Attanasi and D. Spinelli, Italian
Society of Chemistry, Rome, 1998, vol. 2, p. 59.
3 (a) J. Bussenius, M. Keller and W. Eberbach, Liebigs Ann. Chem.,
1995, 202, 1503; (b) J. Moursounidis and D. Wege, Tetrahedron
Lett., 1986, 27, 3045.
4 (a) W. Friedrichsen, A. Schöning and T. Debaerdemaeker,
Heterocycles, 1986, 24, 307; (b) A. Schöning and W. Friedrichsen,
Tetrahedron Lett., 1988, 29, 1137; (c) A. Schöning, T.
Debaerdemaeker and M. Zander, Chem. Ber., 1989, 122, 1119; (d)
A. Schöning and W. Friedrichsen, Liebigs Ann. Chem., 1989, 405;
(e) A. Schöning and W. Friedrichsen, Z. Naturforsch., Sect. B, 1989,
44, 825; ( f ) C. O. Kappe and A. Padwa, J. Org. Chem., 1996, 61, 6166.
5 For a transient generation of a thieno[2,3-c]furan see T. Kuroda,
M. Takahashi, T. Ogiku, H. Ohmizu, K. Kendo and T. Iwasaki,
J. Chem. Soc., Chem. Commun., 1991, 1635.
6 (a) S. Reck and W. Friedrichsen, J. Org. Chem., 1998, 63, 7680; (b)
S. Reck, C. Näther and W. Friedrichsen, Heterocycles, 1999, 51,
1225.
7 (a) L. Aßmann, L. Palm, M. Zander and W. Friedrichsen, Chem. Ber.,
1991, 124, 2481; (b) S. Reck, K. Bluhm, T. Debaerdemaeker, J.-P.
Declercq, B. Klenke and W. Friedrichsen, Heterocycles, 1996, 43,
1165.
22 O. Peters, T. Debaerdemaeker and W. Friedrichsen, J. Chem. Soc.,
Perkin Trans. 1, 1999, 59.
23 Similar regioselectivities have been observed in related compounds
(see ref. 22 and literature cited therein). These observations cannot
be accounted for with simple charge density arguments. (AM1
and PM3 calculations24 for 11a reveal that the total charge
density at Cb is lower than at Ca), but can be explained when the
corresponding intermediates are taken into consideration (see
Computational results).
8 S. Reck, C. Näther and W. Friedrichsen, Heterocycles, 1998, 48, 853.
9 (a) G. W. Gribble, D. J. Keavy, D. A. Davis, M. G. Saulnier,
B. Pelcman, T. C. Barden, M. P. Sibil, E. R. Olson and J. J.
BelBruno, J. Org. Chem., 1992, 57, 5878; (b) J. Nagel, W.
Friedrichsen and T. Debaerdemaeker, Z. Naturforsch., Sect. B,
1993, 48, 213; (c) O. Peters and W. Friedrichsen, Heterocycl.
Commun., 1996, 2, 203; (d) J.-S. Shiue and J.-M. Fang, J. Chem.
Soc., Chem. Commun., 1993, 1277.
24 These calculations have been carried out with the program system
HyperChem, version 5.11.
10 (a) J. L. Segura and N. Martín, Chem. Rev., 1999, 99, 3199; (b)
M. Jinno, Y. Kitano, M. Tada and K. Chiba, Org. Lett., 1999, 1,
435; (c) H.-C. Chen and T.-s. Chou, Tetrahedron, 1998, 54, 12609;
(d) K. Diker, M. D. de Maindreville, D. Royer, F. Le Provost
and I. Lévy, Tetrahedron Lett., 1999, 40, 7463; (e) T. J. Connolly
and T. Durst, Tetrahedron, 1997, 53, 15957; (f) T. J. Connolly and
25 E. Vowinkel, Chem. Ber., 1967, 100, 16.
26 P. Waykole and R. N. Usgaonkar, Indian J. Chem., Sect. B, 1984, 23,
478.
27 For an unregioselective ring opening reaction of homophthalic
anhydride see: W. V. Murray and S. K. Hadden, J. Chem. Res., 1991,
279.
J. Chem. Soc., Perkin Trans. 1, 2000, 1387–1398
1397