10.1002/chem.201905483
Chemistry - A European Journal
FULL PAPER
[6]
[7]
T. Han, Y. Wang, H.-L. Li, X. Y. Luo, W.-P. Deng, J. Org. Chem. 2018,
83, 1538–1542.
N-Dearylation of 3-aminofurans (3) and 3-aminothiophenes
(5) was tried to cleave the aryl on the nitrogen functionality by
means of ceric ammonium nitrate (CAN)[37] or silver(II) persulfate
J. J. Huang, X. W. Wu, J. M. Jia, X. K. Guo, X. Xue, Z. Y. Jiang, S. L.
Zhang, X. J. Zhang, H. P. Sun, Q. D. You, Eur. J. Med. Chem. 2013, 63,
269–278.
[38]
[Ag(Py)4]S2O8 according to the literature methods, but failed.
The oxidative N-dearylation reaction of 3e only led to
complicated mixtures from which the desired N-dearylation
product was not isolated.
[8]
[9]
A. Hassanpour, C. A. De Carufel, S. Bourgault, P. Forgione, Chem.-Eur.
J. 2014, 20, 2522–2528.
a) D. Kalaitzakis, M. Triantafyllakis, G. I. Ioannou, G. Vassilikogiannakis,
Angew. Chem. Int. Ed. 2017, 56, 4020-4023; Angew. Chem. 2017, 129,
4078–4081; (b) H. D. Hao, D. Trauner, J. Am. Chem. Soc. 2017, 139,
4117–4122.
In summary, an efficient Lewis acid-catalyzed protocol has
been developed for the synthesis of 2-acyl-3-amino-substituted
furan and thiophene derivatives from enaminones and
enaminothiones, that is, -oxo (thioxo) ketene N,S-acetals, and
sulfur ylides. The [4+1] annulation is featured broad substrate
scopes, high efficiency, and good functional group tolerance.
This work has demonstrated the potential applicability of the
present method for the synthesis of highly functionalized furan
and thiophene derivatives.
[10] a) L. J. Zhou, M. R. Zhang, W. B. Li, J. L. Zhang, Angew. Chem. Int. Ed.
2014, 53, 6542–6545; Angew. Chem. 2014, 126, 6660–6663; b) Z.-W.
Chen, M.-T. Luo, D.-N. Ye, Z.-G. Zhou, M. Ye, L.-X. Liu, Synth.
Commun. 2014, 44, 1825–1831.
[11] a) Q. Yao, Y. T. Liao, L. L. Lin, X. B. Lin, J. Ji, X. H. Liu, X. M. Feng,
Angew. Chem. Int. Ed. 2016, 55, 1859–1862; Angew. Chem. 2016, 128,
1891–1895; b) J. M. Yang, Z. Q. Li, M. L. Li, Q. He, S. F. Zhu, Q. L.
Zhou, J. Am. Chem. Soc. 2017, 139, 3784–3789; c) Y. J. Xiao, J. L.
Zhang, Angew. Chem. Int. Ed. 2008, 47, 1903–1906; Angew. Chem.
2008, 120, 1929–1932; d) S. R. Pathipati, A. van der Werf, L. Eriksson,
N. Selander, Angew. Chem. Int. Ed. 2016, 55, 11863–11866; Angew.
Chem. 2016, 128, 12042–12045.
Experimental Section
General procedure for the synthesis of 3
[12] a) S. P. Morcillo, D. Leboeuf, C. Bour, V. Gandon, Chem.-Eur. J. 2016,
22, 16974–16978; b) M. Yoshida, S. Ohno, K. Shishido, Chem.-Eur. J.
2012, 18, 1604–1607.
Synthesis of 3a: Under a nitrogen atmosphere, a mixture of (E)-4-
(methylthio)-4-(phenylamino)but-3-en-2-one (1a) (104 mg, 0.5 mmol),
S,S-dimethyl sulfur ylide (2a) (180 mg, 1.0 mmol), and ZnCl2 (7 mg, 0.05
mmol) in DMF (3 mL) was stirred at 120 oC for 24 h. After cooled to
ambient temperature, 5 mL CH2Cl2 was added and the resultant mixture
was filtered through a short pad of celite, followed by rinsing with 10 mL
CH2Cl2. The combined filtrate was concentrated under reduced pressure.
The resulting residue was purified by silica gel column chromatography
[13] a) T. Wang, C. H. Wang, J. L. Zhang, Chem. Commun. 2011, 47,
5578–5580; b) A. Blanc, K. Tenbrink, J. M. Weibel, P. Pale, J. Org.
Chem. 2009, 74, 5342–5348.
[14] a) A. S. Dudnik, V. Gevorgyan, Angew. Chem. Int. Ed. 2007, 46, 5195–
5197; Angew. Chem. 2007, 119, 5287–5289; b) L. L. Peng, X. Zhang,
M. Ma, J. B. Wang, Angew. Chem. Int. Ed. 2007, 46, 1905–1908;
Angew. Chem. 2007, 119, 1937–1940; c) M. E. Arba, S. E. Dibrell, F.
Meece, D. E. Frantz, Org. Lett. 2018, 20, 5886−5888; d) H. L. Li, Y.
Wang, P. P. Sun, X. Y. Luo, Z. L. Shen, W. P. Deng, Chem.-Eur. J.
2016, 22, 9348–9355; e) A. S. Dudnik, A. W. Sromek, M. Rubina, J. T.
Kim, A. V. Kel’i, V. Gevorgyan, J. Am. Chem. Soc. 2008, 130, 1440–
1452; f) X. F. Xia, W. He, G. W. Zhang, D. W. Wang, Org. Chem. Front.
2019, 6, 342-346; g) C.-K. Jung, J.-C. Wang, M. J. Krische, J. Am.
Chem. Soc. 2004, 126, 4118–4119.
o
(eluent: petroleum ether (60-90 C)/EtOAc = 50:1, v/v) to afford 3a as a
yellow solid (104 mg, 75%).
Acknowledgements
We are grateful to the National Natural Science Foundation of
China (21871253 and 21672209) and the National Basic
Research Program of China (2015CB856600) for support of this
research.
[15] a) V. Amarnath, K. Amarnath, J. Org. Chem. 1995, 60, 301–307; b) S.
Mao, X.-Q. Zhu, Y.-R. Gao, D.-D. Guo, Y.-Q. Wang, Chem.-Eur. J.
2015, 21, 11335–11339.
[16] B. L. Lu, J. L. Wu, N. Yoshikai, J. Am. Chem. Soc. 2014, 136, 11598–
11601.
[17] P. Lenden, D. A. Entwistle, M. C. Willis, Angew. Chem. Int. Ed. 2011,
50, 10657-10660; Angew. Chem. 2011, 123, 10845–10848.
[18] a) I. P. Beletskaya, V. P. Ananikov, Chem. Rev. 2011, 111, 1596–1636;
b) C. L. Song, H. Yi, B. W. Dou, Y. Y. Li, A. K. Singh, A. W. Lei, Chem.
Commun. 2017, 53, 3689–3692; c) T. Morita, T. Satoh, M. Miura, Org.
Lett. 2015, 17, 4384–4387.
Keywords: zinc • enaminones • enaminothiones • sulfur ylides
• annulation
[1]
[2]
[3]
a) F. Hasegawa, K. Niidome, C. Migihashi, M. Murata, T. Negoro, T.
Matsumoto, K. Kato, A. Fujii, Bioorg. Med. Chem. Lett. 2014, 24, 4266–
4270; b) A. W. Feldman, F. E. Romesberg, Acc. Chem. Res. 2018, 51,
394–403.
[19] a) C. Shen, P. F. Zhang, Q. Sun, S. Q. Bai, T. S. A. Hor, X. G. Liu,
Chem. Soc. Rev. 2015, 44, 291–314; b) J. W. Chen, H. F. Xiang, L.
Yang, X. G. Zhou, RSC Adv. 2017, 7, 7753–7757; c) W. B. Ming, X. C.
Liu, L. J. Wang, J. Liu, M. Wang, Org. Lett. 2015, 17, 1746–1749; d) W.
B. Liu, C. Chen, H. L. Liu, Adv. Synth. Catal. 2015, 357, 4050–4054; e)
D. J. Lee, K. Kim, Y. J. Park, Org. Lett. 2002, 4, 873–876; f) B. S. Kim,
K. S. Choi, K. Kim, J. Org. Chem. 1998, 63, 6086–6087.
a) H. Tsuji, E. Nakamura, Acc. Chem. Res. 2017, 50, 396–406; b) C. L.
Wang, H. L. Dong, W. P. Hu, Y. Q. Liu, D. B. Zhu, Chem. Rev. 2012,
112, 2208–2267; c) C. Zhang, X. Z. Zhu, Acc. Chem. Res. 2017, 50,
1342–1350.
N. A. Lack, P. Axerio-Cilies, P. Tavassoli, F. Q. Han, K. H. Chan, C.
Feau, E. LeBlanc, E. T. Guns, R. K. Guy, P. S. Rennie, A. Cherkasov, J.
Med. Chem. 2011, 54, 8563–8573.
[20] K. C. Nicolaou, G. Skokotas, S. Furuya, H. Suemune, D. C. Nicolaou,
Angew. Chem. Int. Ed. 1990, 29, 1064–1068; Angew. Chem. 1990, 102
1077–1081.
[4]
[5]
K. Ando, E. Tsuji, Y. Ando, N. Kuwata, J. Kunitomo, M. Yamashita, S.
Ohta, S. Kohno, Y. Ohishi, Org. Biomol. Chem. 2004, 2, 625–635.
S. Lee, T. Kim, B. H. Lee, S. Yoo, K. Lee, K. Y. Yi, Bioorg. Med. Chem.
Lett. 2007, 17, 1291–1295.
[21] M. Gütschow, L. Kuerschner, U. Neumann, M. Pietsch, R. Lӧser, N.
Koglin, K. Eger, J. Med. Chem. 1999, 42, 5437–5447.
5
This article is protected by copyright. All rights reserved.