4456
M. W. Rowbottom et al. / Bioorg. Med. Chem. Lett. 16 (2006) 4450–4457
Napier, J. J.; Brune, M. E.; Bush, E. N.; Brodjian, S. J.;
T. M.; Receveur, J.-M.; Little, P. B.; Rist, Ø.; Nørregaard,
P. K.; Ho¨gberg, T. J. Med. Chem. 2005, 48, 5684.
Dayton, B. D.; Shapiro, R.; Hernandez, L. E.; Marsh, K.
C.; Sham, H. L.; Collins, C. A.; Kym, P. R. Bioorg. Med.
Chem. Lett. 2005, 15, 2752; (f) Huang, C. Q.; Baker, T.;
Schwarz, D.; Fan, J.; Heise, C. E.; Zhang, M.; Good-
fellow, V. S.; Markison, S.; Gogas, K. R.; Chen, T.;
Wang, X.-C.; Saunders, J.; Zhu, Y.-F. Bioorg. Med.
Chem. Lett. 2005, 15, 3701; (g) Vasudevan, A.; LaMar-
che, M. J.; Blackburn, C.; Che, J. L.; Luchaco-Cullis, C.
A.; Lai, S.; Marsilje, T. H.; Patane, M. A.; Souers, A. J.;
Wodka, D.; Geddes, B.; Chen, S.; Brodjian, S.; Falls, D.
H.; Dayton, B. D.; Bush, E.; Brune, M.; Shapiro, R. D.;
Marsh, K. C.; Hernandez, L. E.; Sham, H. L.; Collins, C.
A.; Kym, P. R. Bioorg. Med. Chem. Lett. 2005, 15, 4174;
(h) Palani, A.; Shapiro, S.; McBriar, M. D.; Clader, J.
W.; Greenlee, W. J.; Spar, B.; Kowalski, T. J.; Farley, C.;
Cook, J.; Van Heek, M.; Weig, B.; O’Neill, K.; Grazi-
ano, M.; Hawes, B. J. Med. Chem. 2005, 48, 4746; (i)
Kym, P. R.; Iyengar, R.; Souers, A. J.; Lynch, J. K.;
Judd, A. S.; Gao, J.; Freeman, J.; Mulhern, M.; Zhao,
G.; Vasudevan, A.; Wodka, D.; Blackburn, C.; Brown,
J.; Che, J. L.; Cullis, C.; Lai, S. J.; LaMarche, M. J.;
Marsilje, T.; Roses, J.; Sells, T.; Geddes, B.; Govek, E.;
Patane, M.; Fry, D.; Dayton, B. D.; Brodjian, S.; Falls,
D.; Brune, M.; Bush, E.; Shapiro, R.; Knourek-Segel, V.;
Fey, T.; McDowell, C.; Reinhart, G. A.; Preusser, L. C.;
Marsh, K.; Hernandez, L.; Sham, H. L.; Collins, C. A.
J. Med. Chem. 2005, 48, 5888.
6. In rat following a single iv dose of 5 mg/kg, plasma
AUC0–24h, CL, Cmax, t1/2, and Vd were determined to be
4017 ngh/mL, 19.5 mL/min/kg, 27 ng/mL, 4.4 h, and
7.6 L/kg, respectively. Following a single oral dose of
10 mg/kg, plasma AUC0–24h and absolute bioavailability
were determined to be 398 ngh/mL and 5%, respectively.
All data were determined in male Wistar rats (n = 3).
7. General experimental details for this assay may be found
in the following reference: Guo, Z.; Zhu, Y.-F.; Gross, T.
D.; Tucci, F. C.; Gao, Y.; Moorjani, M.; Connors, P. J.;
Rowbottom, M. W.; Chen, Y.; Struthers, R. S.; Xie, Q.;
Saunders, J.; Reinhart, G.; Chen, T. K.; Bonneville, A. L.
K.; Chen, C. J. Med. Chem. 2004, 47, 1259.
8. Oxidative metabolism of the carbon centeradjacent to the 4-
chlorophenyl ring, of compound 1, was not observed upon
incubation with human liver microsomes (As confirmed by
HPLC–MS-MS). This strongly suggests that the observed
increase in metabolic stability (in HLM) of compound 3a is
not due to the presence of the geminal dimethyl group.
9. In rat following a single iv dose of 5 mg/kg, plasma
AUC0–24h, CL, Cmax, t1/2, and Vd were determined to be
4037 ngh/mL, 21 mL/min/kg, 326 ng/mL, 4.8 h, and 8.8 L/
kg, respectively. Following a single oral dose of 10 mg/kg,
plasma AUC0–24h was determined to be 3396 nghr/mL.
All data were determined in male Wistar rats (n = 3).
10. The HERG potassium current was recorded from a
HERG/HEK cell line using established patch-clamp
methods. The effects of test compounds on the HERG
current were determined at the end of a 5 min application.
Test compound(s) were tested at six concentrations
(0.1 nM, 1 nM, 10 nM, 100 nM, 1 lM, and 10 lM).
Cisapride (30 nM) was used as a positive control.
11. Rowley, M.; Hallett, D. J.; Goodacre, S.; Moyes, C.;
Crawforth, J.; Sparey, T. J.; Patel, S.; Marwood, R.; Patel,
S.; Thomas, S.; Hitzel, L.; O’Connor, D.; Szeto, N.; Castro,
J. L.; Hutson, P. H.; MacLeod, A. M. J. Med. Chem. 2001,
44, 1603.
12. (S)-1-Benzyl-3-(methylamino)pyrrolidine is commercially
available from Tokyo Chemical Industry (TCI) America,
Portland, Oregon. The ee was determined to be >97%.
13. (R)-3-(tert-Butoxycarbonyl)aminopyrrolidine 5a is com-
mercially available from Tokyo Chemical Industry (TCI)
America, Portland, Oregon. (R)-3-[(tert-Butoxycarbon-
yl)methylamino]pyrrolidine 5b is obtained from commer-
cially available (R)-1-benzyl-3-(methylamino)pyrrolidine
(TCI America, ee > 97%) via N-3 Boc protection followed
by N-1 debenzylation.
5. (a) Carpenter, A. J.; Hertzog, D. L. Expert Opin. Ther.
Patents 2002, 12, 1639; (b) Collins, C. A.; Kym, P. R.
Curr. Opin. Investig. Drugs 2003, 4, 386; (c) Clark, D. E.;
Higgs, C.; Wren, S. P.; Dyke, H. J.; Wong, M.; Norman,
D.; Lockey, P. M.; Roach, A. G. J. Med. Chem. 2004, 47,
3962; (d) Arienzo, R.; Clark, D. E.; Cramp, S.; Daly, S.;
Dyke, H. J.; Lockey, P.; Norman, D.; Roach, A. G.;
Stuttle, K.; Tomlinson, M.; Wong, M.; Wren, S. P. Bioorg.
Med. Chem. Lett. 2004, 14, 4099; (e) Souers, A. J.; Wodka,
D.; Gao, J.; Lewis, J. C.; Vasudevan, A.; Gentles, R.;
Brodjian, S.; Dayton, B.; Ogiela, C. A.; Fry, D.; Hernan-
dez, L. E.; Marsh, K. C.; Collins, C. A.; Kym, P. R.
Bioorg. Med. Chem. Lett. 2004, 14, 4873; (f) Vasudevan,
A.; Wodka, D.; Verzal, M. K.; Souers, A. J.; Gao, J.;
Brodjian, S.; Fry, D.; Dayton, B.; Marsh, K. C.; Hernan-
dez, L. E.; Ogiela, C. A.; Collins, C. A.; Kym, P. R.
Bioorg. Med. Chem. Lett. 2004, 14, 4879; (g) Souers, A. J.;
Wodka, D.; Gao, J.; Lewis, J. C.; Vasudevan, A.; Gentles,
R.; Brodjian, S.; Dayton, B.; Ogiela, C. A.; Fry, D.;
Hernandez, L. E.; Marsh, K. C.; Collins, C. A.; Kym, P.
R. Bioorg. Med. Chem. Lett. 2004, 14, 4883; (h) Receveur,
J.-M.; Bjurling, E.; Ulven, T.; Little, P. B.; Nørregaard, P.
K.; Ho¨gberg, T. Bioorg. Med. Chem. Lett. 2004, 14, 5075;
(i) Grey, J.; Dyck, B.; Rowbottom, M. W.; Tamiya, J.;
Vickers, T. D.; Zhang, M.; Zhao, L.; Heise, C. E.;
Schwarz, D.; Saunders, J.; Goodfellow, V. S. Bioorg. Med.
Chem. Lett. 2005, 15, 999; (j) Su, J.; McKittrick, B. A.;
Tang, H.; Czarniecki, M.; Greenlee, W. J.; Hawes, B. E.;
O’Neill, K. Bioorg. Med. Chem. 2005, 13, 1829; (k)
Rowbottom, M. W.; Vickers, T. V.; Dyck, B.; Tamiya,
J.; Zhang, M.; Zhao, L.; Grey, J.; Provencal, D.; Schwarz,
D.; Heise, C. E.; Mistry, M.; Fisher, A.; Dong, T.; Hu, T.;
Saunders, J.; Goodfellow, V. S. Bioorg. Med. Chem. Lett.
2005, 15, 3439; (l) Kanuma, K.; Omedera, K.; Nishiguchi,
M.; Funakoshi, T.; Chaki, S.; Semple, G.; Tran, T.-A.;
Kramer, B.; Hsu, D.; Casper, M.; Thomsen, B.; Beeley,
N.; Sekiguchi, Y. Bioorg. Med. Chem. Lett. 2005, 15, 2565;
(m) Kanuma, K.; Omedera, K.; Nishiguchi, M.; Funako-
shi, T.; Chaki, S.; Semple, G.; Tran, T.-A.; Kramer, B.;
Hsu, D.; Casper, M.; Thomsen, B.; Sekiguchi, Y. Bioorg.
Med. Chem. Lett. 2005, 15, 3853; (n) Ulven, T.; Frimurer,
14. Typical experimental procedure for preparation of
rAPU’s, via reductive alkylation: Synthesis of 3a. To a
stirred solution of the HCl salt of 7a (601 mg,
1.21 mmol) and TEA (239 mg, 2.37 mmol) in 35 mL
MeOH at ambient temperature, was added a solution of
3-(4-chlorophenyl)-3-methylbutyraldehyde21
(285 mg,
1.45 mmol) in 5 mL MeOH. Stirring was continued for
a further 16 h before the addition of sodium borohydride
(500 mg, 13.16 mmol). After stirring for 30 min, 10 mL
of 1 N aqueous NaOH solution was added. The MeOH
was removed in vacuo and the remaining aqueous phase
extracted with EtOAc (2 · 100 mL). The combined
organic layers were washed with brine then dried
(MgSO4). Concentration in vacuo gave an oil, which
was purified by silica gel chromatography (gradient
elution with 100% EtOAc to 5% MeOH in EtOAc to
9% MeOH/1% TEA in EtOAc) to afford a colorless
foam, which was redissolved in a solution of methane-
sulfonic acid (77 mg, 0.80 mmol, in 20 mL of DCM).
After stirring for 1.5 h at ambient temperature, concen-