Table 1. Reaction of Isopropenyl Anions with Monoacetate 4a
entry
reagent
reagent source (equiv)
additive(s) (equiv)
catalystb
ratioc of 5a/11
yield, %d
1
2
3
4
5
6
7
8
7
8
8
9
9
9
9
10
6 (1.8), n-BuLi (2)
8 (4)
8 (4)
8 (4), ZnCl2 (10)
8 (4), ZnCl2 (10)
8 (6), ZnCl2 (10)
8 (3.5), ZnCl2 (4)
8 (6), ZnCl2 (2.5)
NaI (1), t-BuCN (5)
s
NiCl2(tpp)2
CuCN
CuCN
67:33
60:40
86:14
-
67:33
92:8
46e
81
90
0
31
MgCl2 (15)
s
CuCN
s
NiCl2(tpp)2
NiCl2(tpp)2
NiCl2(tpp)2
NiCl2(tpp)2
TMEDA (10)
TMEDA (4.2)
TMEDA (2.5)
95
94:6
86:14
85 (80)f
88
a Reactions were carried out in THF at room temperature overnight (entries 1 and 4-8) or for 3 h (entries 2 and 3). b NiCl2(tpp)2 (20 mol %), CuCN (40
1
1
mol %). c Determined by H NMR spectroscopy. d Combined yields determined by H NMR spectroscopy with pyridine as a standard. e 2-Cyclohexenone
was also coproduced in 15% yield. f Isolated yield.
monoterpene with olivetol furnished 2 in a satisfactory
manner. However, the methods would hardly be applicable
to synthesis of structurally related analogues, especially those
possessing a longer alkenyl side chain in place of the
isopropenyl group.4,10 A recent seven-step oxidation11 of the
C(7) methyl group of 2 producing 7-hydroxy-CBD (3), a
metabolite of 2, also implies the unavailability of a synthetic
route to the CBD family.
Herein, we report a new reagent system for this purpose and
a synthesis of 2 and CBD analogues.
Scheme 1. Synthetic Strategy Furnishing Bicyclic
Cannabidiols
Recently, we reported an indirect method for installation
of a bulky aromatic ring onto the γ-substituted cyclohex-
enone and subsequent generation of a reactive enolate.12 By
using this method, we synthesized 1 and its analogues
successfully. However, the substituent we could place at the
γ position of the cyclohexanone is limited to that derived
by aldol reaction with an aldehyde. To gain wider flexibility
in this method, we envisaged reaction of 2-cyclohexene-1,4-
diol monoacetate 413 with alkenyl reagents furnishing
compounds of type 5, which would be transformed into the
CBD family and related analogues by the method mentioned
above (Scheme 1). A synthetic advantage of this strategy is
availability of optically active 4 by the established method.13
The present investigation was started with an application
of the reagent systems originally developed for cyclopentene
monoacetate.14 Thus, reaction of 4 with lithium isopropenyl
borate 7,15 prepared in situ from the boronate ester 6 and
n-BuLi, proceeded at room temperature but afforded a
mixture of products, among which the desired product 5a
(R ) Me) and the regioisomer 11 were detected in moderate
yield with a 67:33 ratio by 1H NMR spectroscopy (Table 1,
entry 1). Next we studied the CuCN-catalyzed reaction with
(5) Mechoulam, R.; Hanus, L. Chem. Phys. Lipids 2002, 121, 35-43.
(6) Sumariwalla, P. F.; Gallily, R.; Tchilibon, S.; Fride, E.; Mechoulam,
R.; Feldmann, M. Arthritis Rheum. 2004, 50, 985-998.
(7) Mechoulam, R.; Parker, L. A.; Gallily, R. J. Clin. Pharmacol. 2002,
42, 11S-19S.
(8) Tius, M. A. Stud. Nat. Prod. Chem. 1997, 19, 185-244.
(9) (a) Mechoulam, R.; Gaoni, Y. J. Am. Chem. Soc. 1965, 87, 3273-
3275. (b) Mechoulam, R.; Braun, P.; Gaoni, Y. J. Am. Chem. Soc. 1972,
94, 6159-6165. (c) Vaillancourt, V.; Albizati, K. F. J. Org. Chem. 1992,
57, 3627-3631. (d) Childers, W. E., Jr.; Pinnick, H. W. J. Org. Chem.
1984, 49, 5276-5277. (e) Evans, D. A.; Barnes, D. M.; Johnson, J. S.;
Lectka, T.; von Matt, P.; Miller, S. J.; Murry, J. A.; Norcross, R. D.;
Shaughnessy, E. A.; Campos, K. R. J. Am. Chem. Soc. 1999, 121, 7582-
7594. (f) Petrzilka, T.; Haefliger, W.; Sikemeier, G.; Ohloff, G.; Eschen-
moser, A. HelV. Chim. Acta 1967, 719-723. (g) Razdan, R. K.; Dalzell,
H. C.; Handrick, G. R. J. Am. Chem. Soc. 1974, 96, 5860-5865. (h) Baek,
S.-H.; Srebnik, M.; Mechoulam, R. Tetrahedron Lett. 1985, 26, 1083-
1086. (i) Hanus, L. O.; Tchilibon, S.; Ponde, D. E.; Breuer, A.; Fride, E.;
Mechoulam, R. Org. Biomol. Chem. 2005, 3, 1116-1123.
(10) (a) Tius, M. A.; Busch-Petersen, J.; Marris, A. R. Chem. Commun.
1997, 1867-1868. (b) Drake, D. J.; Jensen, R. S.; Busch-Petersen, J.;
Kawakami, J. K.; Fernandez-Garcia, M. C.; Fan, P.; Makriyannis, A.; Tius,
M. A. J. Med. Chem. 1998, 41, 3596-3608. (c) Harrington, P. E.;
Stergiades, I. A.; Erickson, J.; Makriyannis, A.; Tius, M. A. J. Org. Chem.
2000, 65, 6576-6582. (d) Chu, C.; Ramamurthy, A.; Makriyannis, A.; Tius,
M. A. J. Org. Chem. 2003, 68, 55-61 and references therein.
(11) Tchilibon, S.; Mechoulam, R. Org. Lett. 2000, 2, 3301-3303.
(12) (a) William, A. D.; Kobayashi, Y. Org. Lett. 2001, 3, 2017-2020;
J. Org. Chem. 2002, 67, 8771-8782.
alkenyl Grignard reagents. According to the earlier result
with 2-cyclopentene-1,4-diol monoacetate, isopropenylmag-
nesium chloride would be a suitable reagent for the present
reaction with 4.14c However, preparation of the chloride
reagent was unsuccessful as stated.14c Instead, the bromide
reagent 8, prepared easily, resulted in lower regioselectivity
2700
Org. Lett., Vol. 8, No. 13, 2006