SCHEME 1. Syn th esis of â-Ketoester s 2 a n d
Glycoh om oglu ta m a tes 5
A New Sca ffold for th e Ster eoselective
Syn th esis of r-O-Lin k ed Glycop ep tid e
Mim etics
Francesca Venturi, Chiara Venturi, Francesca Liguori,
Martina Cacciarini, Monica Montalbano, and
Cristina Nativi*
Dipartimento di Chimica Organica “Ugo Schiff”,
Universita` di Firenze, via della Lastruccia,
13 I-50019 Sesto Fiorentino (FI), Italy
cristina.nativi@unifi.it
Received April 5, 2004
Abstr a ct: R-O-Linked glycohomoglutamates are obtained
as diastereomerically pure compounds by chemo-, regio-, and
stereoselective cycloadditions between glycals and aspartic
acid derivatives. The latter constitute orthogonally func-
tionalized scaffolds for glycopeptide mimetics.
The remarkable structural complexity of glycoproteins,
which arises from the different combination of amino
acids and carbohydrates, is an ideal tool for coding cell’s
information.1 As a matter of fact, in eukaryotic organisms
most proteins are glycosylated and the consequences are
evident in many physiological events such as cell-cell
adhesion, cell growth, or cell-virus interaction.2 The
study of cell surface glycopeptides has recently been
focused on glycopeptide mimetics3 because the synthesis
of native glycoproteins still remains an ambitious, time-
consuming target. Thus, novel chemical approaches have
been developed to introduce non-native linkages into
large biomolecules to render complex glycopeptidic struc-
tures more easily available. In this context, although
most of the glycoproteins present the peptide motif
â-linked at the anomeric carbon of the terminal monosac-
charide unit, the importance of naturally occurring R-O-
glycopeptides such as mucins4 or R-N-glycopeptides such
as nephritogenoside5 has stimulated many researchers
to develop new selective methods for achieving R-O-
glycosidation of amino acids.6,7 We wish to describe here
an easy and totally stereoselective method for the prepa-
ration of O-glycoamino acids that retain the R stereo-
chemistry of native sugar-peptide linkage8 and that can
be used as multifunctional scaffolds for glycopeptide
mimetics.
In the present approach, O-glycohomoglutamates are
obtained as diastereomerically pure R-isomers from gly-
cals and aspartic esters. The issue of linking a carbohy-
drate domain to an amino acid under strict stereochem-
ical control has been solved by the cycloaddition of
appropriately protected glycals to δ-amino-R-thio-â-ke-
toesters9 derived from N-BOC-aspartic acid benzyl ester
(1) which occurs with complete chemo-, regio- and ste-
reoselectivity. (Scheme 1)
The transformation of 1 into â-ketoesters 2 using
Meldrum’s acid10,11 represents a valuable tool for the
preparation of a variety of suitable phthalimidosulfenyl
derivatives 3, by reaction with phthalimidosulfenyl chlo-
ride (PhtNSCl). Highly reactive 4, generated from 3 by
base treatment, was trapped “in situ” by glycals to give
R-O-glycohomoglutamates 5 as diastereomerically pure
isomers,12 in good yields (Table 1).
Selective transformation of multifunctional O-gly-
coamino acids 5 afforded new glycopeptide mimetics. For
example, the tert-butoxycarbonyl group (BOC) on 5a was
(6) (a) Li, B.; Franck, R. W.; Capozzi, G.; Menichetti, S.; Nativi, C.
Org. Lett. 1999, 1, 111. (b) Li, B.; Franck, R. W. Bioorg. Med. Chem.
Lett. 1999, 9, 2629.
(7) (a) Nakahara, Y.; Nakahara, Y.; Ogawa, T. Carbohydr. Res. 1996,
292, 71. (b) Paulsen, H.; Schleyer, A.; Mathieux, N.; Meldal, M.; Bock,
K. J . Chem. Soc., Perkin Trans. 1 1997, 281. (c) Debailleul, V.; Laine,
A.; Huet, G.; Mathon, P.; d’Hooghe, M. C.; Aubert, J . P.; Porchet, N. J .
Biol. Chem. 1998, 273, 881. (d) Live, D. H.; Williams, L. J .; Kuduk, S.
D.; Schwartz, J . B.; Glunz, P. W.; Chen, X.-T.; Sames, D.; Kumar, R.
A.; Danishefsky, S. J . Proc. Nat. Acad. Sci. U.S.A. 1999, 96, 3489. (e)
Davis, B. G. Chem. Rev. 2002, 102, 579.
(8) For the synthesis of 2-deoxyglycopeptide, see: (a) Laupichler,
L.; Sowa, C. E.; Thiem, J . Biorg. Med. Chem. 1994, 2, 1281. (b) Reddy,
B. G.; Madhusudanam, K. P.; Vankar, Y. D. J . Org. Chem. 2004, 69,
2630.
(9) Rodriguez, E. C.; Winans, K. A.; King, D. S.; Bertozzi, C. R. J .
Am. Chem. Soc. 1997, 119, 9905.
(10) Oikawa, Y.; Sugano, K.; Yonemitsu, O. J . Org. Chem. 1978, 43,
2087.
(11) Boccardo, G.; Capozzi, G.; Giuntini, M.; Menichetti, S.; Nativi,
C. Tetrahedron 1997, 53, 17383.
* To whom correspondence should be addressed. Tel: +39-055-
4573540. Fax: +39-055-4573570.
(1) Hang, H. C.; Bertozzi, C. R. Acc. Chem. Res. 2001, 34, 727.
(2) (a) Varki, A. Glycobiology 1993, 3, 97. (b) Lee, Y. C.; Lee, R. T.
Acc. Chem. Res. 1995, 28, 321.
(3) (a) Dwek, R. A. Chem. Rev. 1996, 96, 683. (b) Sears, P.; Wong,
C. H.; Angew. Chem., Int. Ed. 1999, 38, 836. (c) Marcaurelle, L. A.;
Bertozzi, C. R. Chem. Eur. J . 1999, 5, 1384. (d) Herzner, H.; Reipen,
T.; Shultz, M.; Kunz, H. Chem. Rev. 2000, 100, 4495. (e) Dondoni, A.;
Marra, A. Chem. Rev. 2000, 100, 4395. (f) Kro¨ger, L.; Henkensmeier,
D.; Scha¨fer, A.; Thiem, J . Bioorg. Med. Chem. Lett. 2004, 14, 73.
(4) (a) Schwarz, J . B.; Kuduk, S. D.; Chen, X.-T.; Sames, D.; Glunz,
P. W.; Danishefsky, S. J . J . Am. Chem. Soc. 1999, 121, 2662. (b) Coltart,
D. M.; Royyuru, A. K.; Williams, L. J .; Glunz, P. W.; Sames, D.; Kuduk,
S. D.; Schwarz, J . B.; Chen, X.-T.; Danishefsky, S. J .; Live, D. H. J .
Am. Chem. Soc. 2002, 124, 9833.
(5) Shibata, S.; Nagasawa, T. J . Immunol. 1971, 106, 1284.
10.1021/jo049441h CCC: $27.50 © 2004 American Chemical Society
Published on Web 08/06/2004
J . Org. Chem. 2004, 69, 6153-6155
6153