C O M M U N I C A T I O N S
for 2-6. This material is available free of charge via the Internet at
References
(1) (a) Igau, A.; Gru¨tzmacher, H.; Baceiredo, A.; Bertrand, G. J. Am. Chem.
Soc. 1988, 110, 6463-6466. (b) Igau, A.; Baceiredo, A.; Trinquier, G.;
Bertrand, G. Angew. Chem., Int. Ed. Engl. 1989, 28, 621-622. (c)
Arduengo, A. J., III, Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991,
113, 361-363.
(2) (a) Bourissou, D.; Guerret, O.; Gabba¨ı, F. P.; Bertrand, G. Chem. ReV.
2000, 100, 39-92. (b) Jafarpour, L.; Nolan, S. P. AdV. Organomet. Chem.
2001, 46, 181-222. (c) Enders, D.; Gielen, H. J. Organomet. Chem. 2001,
617-618. (d) Hillier, A. C.; Grasa, G. A.; Viciu, M. S.; Lee, H. M.; Yang,
C.; Nolan, S. P. J. Organomet. Chem. 2002, 653, 69-82. (e) Perry, M.
C.; Burgess, K. Tetrahedron: Asymmetry 2003, 14, 951-961. (f)
Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290-1309.
(3) (a) Alder, R. W.; Blake, M. E.; Bortolotti, C.; Bufali, S.; Butts, C. P.;
Linehan, E.; Oliva, J. M.; Orpen, A. G.; Quayle, M. J. Chem. Commun.
1999, 241-242. (b) Bazinet, P.; Yap, G. P. A.; Richeson, D. S. J. Am.
Chem. Soc. 2003, 125, 13314-13315. (c) Otto, M.; Conejero, S.; Canac,
Y.; Romanenko, V. D.; Rudzevitch, V.; Bertrand, G. J. Am. Chem. Soc.
2004, 126, 1016-1017.
Figure 2. Thermal ellipsoid diagram of 4 (50% probability), (H atoms are
omitted). Selected bond distances (Å) and angles (deg): C1A-C1B
1.3335(17), N1A-C1A-N2A 95.30(10), N1B-C1B-N2B 95.12(10),
C2A-N1A-C1A 134.14(10), C11A-N2A-C1A 127.79(10), C2B-N1B-
C1B 132.99(11), C11B-N2B-C1B 125.49(10).
(4) Alder, R. W.; Allen, P. R.; Murray, M.; Orpen, A. G. Angew. Chem., Int.
Ed. Engl. 1996, 35, 1121-1123.
(5) Silylamidines 1 were prepared from the N,N′-diarylformamidine.9 n-
Butyllithium solution in hexanes (7.1 mmol) was added slowly to a THF
(30 mL) solution of formamidine (7.1 mmol) at room temperature followed
by trimethylsilyl chloride (0.77 g, 0.71 mmol) after 30 min. Evaporation
and extraction with ether gave the desired product.
(6) Crystal data for 2a: C24H33F3N3O3PS, M ) 531.56, triclinic, space group
P1h, a ) 10.5668(3) Å, b ) 11.8758(4) Å, c ) 12.7952(4) Å, R ) 67.7490-
(10)°, â ) 65.7880(10)°, γ ) 67.4890(10)°, V ) 1305.19(7) Å3, Z ) 2,
µ(Mo KR) ) 0.71073 Å, crystal size ) 0.37 × 0.26 × 0.25 mm3, 50465
reflections collected (15049 independent, Rint ) 0.0566), 348 parameters,
R1 [I > 2σ(I)] ) 0.0450, wR2 [all data] ) 0.0850. For 4: C50H72N6P2,
M ) 819.08, monoclinic, space group P21/c, a ) 13.7626(6) Å, b )
16.2123(8) Å, c ) 21.7085(10) Å, â ) 101.3420(10)°, V ) 4749.1(4)
Å3, Z ) 4, µ(Mo KR) ) 0.71073 Å, crystal size ) 0.33 × 0.31 × 0.21
mm3, 76278 reflections collected (14587 independent, Rint ) 0.0787), 811
parameters, R1 [I > 2σ(I)] ) 0.0500, wR2 [all data] ) 0.0770. For 5:
C31H48N3P, M ) 493.69, monoclinic, space group P21/n, a ) 8.9994(10)
Å, b ) 26.366(3) Å, c ) 12.6593(14) Å, â ) 94.240(2)°, V ) 2995.5(6)
Å3, Z ) 4, µ(Mo KR) ) 0.71073 Å, crystal size ) 0.41 × 0.22 × 0.07
mm3, 26662 reflections collected (6905 independent, Rint ) 0.0643), 508
parameters, R1 [I > 2σ(I)] ) 0.0525, wR2 [all data] ) 0.0846. Data were
collected at 98(2) K for 2a, 100(2) K for 4 and 100(2) K for 5 on Bruker
SMART 1000 diffractometer. The structures were solved by direct methods
(SHELXS-97),10 and refined using the least-squares method on F2.11
Crystallographic data have been deposited at the CCDC, 12 Union Road,
Cambridge CB2 1EZ, UK, and copies can be obtained on request, free of
charge, by quoting the publication citation and the deposition number
228866 (2a), 231890 (4), 234638 (5).
Figure 3. Thermal ellipsoid diagram of 5 (50% probability), (H atoms are
omitted). Selected bond distances (Å) and angles (deg): C1-N1 1.373(2),
C1-N2 1.387(2), N1-C1-N2 96.72(13), C1-N1-C2 126.21(13),
C1-N2-C14 121.87(13).
1.387(2) Å] are short, suggesting interaction of the nitrogen with
the carbene center, but the geometry around the nitrogen atoms is
not strictly planar [sum of the bond angles ) 355.1° and 348.2°],
presumably due to the ring strain.
This report demonstrates the preparation of the first stable four-
membered ring diaminocarbene. Studies of its coordination proper-
ties with transition metals are currently in progress.
Acknowledgment. We thank Lawrence M. Henling and Michael
W. Day for X-ray crystallography studies. E.D.-A. is grateful to
the Ministe`re des Affaires Etrange`res (France) for a Lavoisier
postdoctoral fellowship. This work was supported by the National
(7) Roques, C.; Mazie`res, M.-R.; Majoral, J.-P.; Sanchez, M.; Jaud, J. Inorg.
Chem. 1989, 28, 3931-3933.
13
(8) Range for δ
C
in diaminocarbenes: five-membered ring 205-245
carbene
ppm, six-membered ring 236-242 ppm, acyclic 236-256 ppm. In the
case of monoaminocarbenes, more downfield chemical shifts have been
reported: (a) Sole´, S.; Gornitzka, H.; Schoeller, W. W.; Bourissou, D.;
Bertrand, G. Science 2001, 292, 1901-1903. (b) Merceron-Saffon, N.;
Baceiredo, A.; Gornitzka, H.; Bertrand, G. Science 2003, 301, 1223-
1225.
(9) Taylor, E. C.; Ehrhart, W. A. J. Org. Chem. 1963, 28, 1108-1112.
(10) Sheldrick, G. M. Acta Crytallogr. 1990, A46, 467.
(11) Sheldrick, G. M. SHELXL-97. Program for Crystal Structure Refinement,
Science Foundation.
University of Go¨ttingen, 1997.
Supporting Information Available: Full experimental details
and spectroscopic data for 2-6. X-ray crystallographic data (CIF)
JA047892D
9
J. AM. CHEM. SOC. VOL. 126, NO. 33, 2004 10199