7552
M. Petit et al. / Tetrahedron 60 (2004) 7543–7552
Hernandes, M. Z.; Freitas, L. C. G. Tetrahedron: Asymmetry
3. Conclusions
1997, 8, 3955–3975. (c) Curran, D. P.; Geib, S. J.; DeMello,
N. Tetrahedron 1999, 55, 5681–5704.
In summary, we have shown that a removable ortho-
substituent can be used for radical cyclizations of axially
chiral N-acryloyl-o-iodoanilides and N-allyl-o-iodoanilides.
High levels of chirality transfer are observed in many cases
and an ortho-substituent such as bromine or silicon can be
easily removed or replaced with retention of the enantio-
purity. In the case of 6-bromo-2-iodoanilide, we observed
total chemoselectivity in favor of the iodine in the tin
hydride reduction. The regioselectivity of the competitive
cyclization to the N-allyl group over the N-acryloyl group
discovered in previous work was extended. For axially
chiral N-acryloyl-o-iodoanilides, we proved the sense of
chirality transfer by obtaining several X-ray structures of
precursors and cyclized compounds. Finally, we demon-
strated that the cyclization of axially chiral N-acryloyl-o-
iodoanilides and N-allyl-o-iodoanilides can be applied
toward the synthesis of chiral dihydrooxindoles and
dihydroindoles, and can also be extended to the synthesis
of chiral pyrroloquinolinones by using a chemo-, regio- and
stereoselective double radical cyclization.
4. (a) Kitagawa, O.; Momose, S.; Fushimi, Y.; Taguchi, T.
Tetrahedron Lett. 1999, 40, 8827–8831. (b) Kitagawa, O.;
Izawa, H.; Sato, K.; Dobashi, A.; Taguchi, T.; Shiro, M. J. Org.
Chem. 1998, 63, 2634–2640. (c) Kitagawa, O.; Izawa, H.;
Taguchi, T.; Shiro, M. Tetrahedron Lett. 1997, 38,
4447–4450. (d) Hata, T.; Koide, H.; Taniguchi, N.; Uemura,
M. Org. Lett. 2000, 2, 1907–1910. (e) Hata, T.; Koide, H.;
Uemura, M. Synlett 2000, 1145–1147. (f) Clayden, J.;
Westlund, N.; Wilson, F. X. Tetrahedron Lett. 1996, 37,
5577–5580.
5. For review on enantioselective radical reactions: Sibi, M. P.;
Manyem, S.; Zimmerman, J. Chem. Rev. 2003, 103,
3263–3296.
6. Curran, D. P.; Liu, W. D.; Chen, C. H.-T. J. Am. Chem. Soc.
1999, 121, 11012–11013.
7. Curran, D. P.; Chen, C. H.-T.; Geib, S. J.; Lapierre, A. J. B.
Tetrahedron 2004, 60, 4413–4424.
8. For review on oxindole alkaloids see: Marti, C.; Carreira, E.
Eur. J. Org. Chem. 2003, 2209–2219.
9. Llabres, J. M.; Viladomat, F.; Bastida, J.; Codina, C.;
Rubriralta, M. Phytochemistry 1986, 25, 2637–2640.
10. Jones, K.; Wilkinson, J. J. Chem. Soc., Chem. Commun. 1992,
24, 1767–1769.
Supporting information available
Full experimental details of the synthesis, separation,
cyclization, and characterization of all compounds
described in this paper are available (part 1, pages 1–42)
along with complete details of all the crystal structures (part
2, pages 43–111) and copies of representative spectra (part
3, pages 112–155).
11. Kajigaeshi, S.; Kakinami, T.; Yamasaki, H.; Fujisaki, S.;
Okamoto, T. Bull. Chem. Soc. Jpn 1988, 61, 600–602.
¨
12. Hellwinkel, D.; Lammerzahl, F.; Hofmann, G. Chem. Ber.
1983, 116, 3375–3405.
13. Kitagawa, O.; Izawa, H.; Sato, K.; Dobashi, A.; Taguchi, T.;
Shiro, M. J. Org. Chem. 1998, 63, 2634–2640.
14. Miura, K.; Ichinose, Y.; Nozaki, K.; Fugami, K.; Oshima, K.;
Utimoto, K. Bull. Chem. Soc. Jpn 1989, 62, 143–147.
15. Cass, Q. B.; Degani, A. L. G.; Tiritan, M. E.; Matlin, S. A.;
Curran, D. P.; Balog, A. Chirality 1997, 9, 109–112.
16. Traces of uncyclized, reduced compounds (between 1–5%)
were also isolated by chromatography on silica gel.
17. Kondru, R. K.; Chen, C. H. T.; Curran, D. P.; Beratan, D. N.;
Wipf, P. Tetrahedron: Asymmetry 1999, 10, 4143–4150.
18. Rate constant measurements show that aryl iodides are about
400 times more reactive than aryl bromides towards tributyltin
radical. Curran, D. P.; Jasperse, C. P.; Totleben, M. J. J. Org.
Chem. 1991, 56, 7169–7172.
Acknowledgements
We thank the National Science Foundation for funding this
work.
References and notes
1. (a) Oki, M. Applications of Dynamic NMR Spectroscopy to
Organic Chemistry. VCH: Deerfield Beach, FL, 1985; p 160.
(b) Price, B. J.; Eggleston, J. A.; Sutherland, I. O. J. Chem.
Soc., B 1967, 922. (c) Shvo, Y.; Taylor, E. C.; Mislow, K.;
Raban, M. J. Am. Chem. Soc. 1967, 89, 4910. (d) Siddall, T. H.;
Stewart, W. E., III. J. Phys. Chem. 1969, 73, 40.
19. Leading references: (a) Beckwith, A. L. J.; Bowry, V. W.;
Bowman, W. R.; Mann, E.; Parr, J.; Storey, J. M. D. Angew.
Chem., Int. Ed. 2004, 43, 95–98. (b) Bowman, W. R.; Bridge,
C. F.; Brookes, P. J. Chem. Soc., Perkin Trans. 1 2000, 1–14.
20. (a) Yu, Q.; Li, Y.; Luo, W. Heterocycles 1993, 36,
1791–1794. (b) Gassman, P. G.; Halweg, K. M. J. Org.
Chem. 1979, 44, 628–629.
2. (a) Clayden, J. Angew. Chem., Int. Ed. 1997, 36, 949–951. (b)
Clayden, J. Synlett 1998, 810. (c) See also the recent
Tetrahedron Symposium-in-Print on Asymmetric Reactions
of Axially Chiral Amides, Clayden, J., Ed., Tetrahedron 2004,
60(20), 4325–4558.
21. See Chapter 2 in Curran, D. P.; Porter, N. A.; Giese, B.
Stereochemistry of Radical Reactions: Concepts, Guidelines,
and Synthetic Applications. VCH: Weinheim, 1996.
22. Dankwardt, J. W.; Flippin, L. A. J. Org. Chem. 1995, 60,
2312–2313.
3. (a) Curran, D. P.; Qi, H.; Geib, S. J.; DeMello, N. J. Am. Chem.
Soc. 1994, 116, 3131–3132. (b) Curran, D. P.; Hale, G. R.;
Geib, S. J.; Balog, A.; Cass, Q. B.; Degani, A. L. G.;