Dipeptidomimetic Ketomethylene Isosteres
J ournal of Medicinal Chemistry, 2004, Vol. 47, No. 19 4765
(5) Moore, V. A.; Irwin, W. J .; Timmins, P.; Lambert, P. A.; Chong,
S.; Dando, S. A.; Morrison, R. A. A rapid screening system to
determine drug affinities for the intestinal dipeptide transporter.
2: Affinities of ACE inhibitors. Int. J . Pharm. 2000, 210, 29-
44.
(6) de Vrueh, R. L. A.; Smith, P. L.; Lee, C. P. Transport of L-valine-
acyclovir via the oligopeptide transporter in the human intes-
tinal cell line, Caco-2. J . Pharmacol. Exp. Ther. 1998, 286, 1166-
1170.
(7) Anand, B. S.; Patel, J .; Mitra, A. K. Interactions of the dipeptide
ester prodrugs of acyclovir with the intestinal oligopeptide
transporter: Competitive inhibition of glycylsarcosine transport
in human intestinal cell line-Caco-2. J . Pharmacol. Exp. Ther.
2003, 304, 781-791.
(8) Taub, M. E.; Moss, B. A.; Steffansen, B.; Frokjaer, S. Influence
of oligopeptide transporter binding affinity upon uptake and
transport of D-Asp(OBzl)-Ala and Asp(OBzl)-Sar in filter-grown
Caco-2 monolayers. Int. J . Pharm. 1997, 156, 219-228.
(9) Taub, M. E.; Moss, B. A.; Steffansen, B.; Frokjaer, S. Oligopep-
tide transporter mediated uptake and transport of D-Asp(OBzl)-
Ala, D-Glu(OBzl)-Ala, and D-Ser(Bzl)-Ala in filter-grown Caco-2
monolayers. Int. J . Pharm. 1998, 174, 223-232.
(25) Deziel, R.; Plante, R.; Caron, V.; Grenier, L.; LlinasBrunet, M.;
Duceppe, J . S.; Malenfant, E.; Moss, N. Practical and diastereo-
selective synthesis of ketomethylene dipeptide isosteres of the
type AAΨ[COCH2]Asp. J . Org. Chem. 1996, 61, 2901-2903.
(26) Våbenø, J .; Brisander, M.; Lejon, T.; Luthman, K. Diastereo-
selective reduction of a chiral N-Boc-protected δ-amino-R,â-
unsaturated γ-keto ester Phe-Gly dipeptidomimetic. J . Org.
Chem. 2002, 67, 9186-9191.
(27) Baldwin, J . E.; Adlington, R. M.; J ones, R. H.; Schofield, C. J .;
Zaracostas, C.; Greengrass, C. W. γ-Lactam analogues of car-
bapenicillanic acids. Tetrahedron 1986, 42, 4879-4888.
(28) Reduction of 8 with H2/Pd-C in EtOAc gave the saturated acid.
(29) Corey, E. J .; Schmidt, G. Useful procedures for the oxidation of
alcohols involving pyridinium dichromate in aprotic media.
Tetrahedron Lett. 1979, 20, 399-402.
(30) Wang, S.-S.; Gisin, B. F.; Winter, D. P.; Makofske, R.; Kulesha,
I. D.; Tzougraki, C.; Meienhofer, J . Facile synthesis of amino
acid and peptide esters under mild conditions via cesium salts.
J . Org. Chem. 1977, 42, 1286-1290.
(31) Significant esterase activity in Caco-2 cell experiments has been
reported in other studies: Pauletti, G. M.; Gangwar, S.; Wang,
B.; Borchardt, R. T. Esterase-sensitive cyclic prodrugs of pep-
tides: evaluation of a phenylpropionic acid promoiety in a model
hexapeptide. Pharm. Res. 1997, 14, 11-17. Pauletti, G. M.;
Gangwar, S.; Okumu, F. W.; Siahaan, T. J .; Stella, V. J .;
Borchardt, R. T. Esterase-sensitive cyclic prodrugs of peptides:
evaluation of an acyloxyalkoxy promoiety in a model hexa-
peptide. Pharm. Res. 1996, 13, 1615-1623. Camenisch, G. P.;
Wang, W.; Wang, B.; Borchardt, R. T. A comparison of the
bioconversion rates and the Caco-2 cell permeation character-
istics of coumarin-based cyclic prodrugs and methylester-based
linear prodrugs of RGD peptidomimetics. Pharm. Res. 1998, 15,
1174-1181.
(32) Covitz, K.-M. Y.; Amidon, G. L.; Sade´e, W. Membrane topology
of the human dipeptide transporter, hPEPT1, determined by
epitope insertions. Biochemistry 1998, 37, 15214-15221.
(33) Fei, Y. J .; Liu, W.; Prasad, P. D.; Kekuda, R.; Oblak, T. G.;
Ganapathy, V.; Leibach, F. H. Identification of the histidyl
residue obligatory for the catalytic activity of the human H+/
peptide cotransporters PEPT1 and PEPT2. Biochemistry 1997,
36, 452-460.
(34) Bolger, M. B.; Haworth, I. S.; Yeung, A. K.; Ann, D.; von
Grafenstein, H.; Hamm-Alvarez, S.; Okamoto, C. T.; Kim, K. J .;
Basu, S. K.; Wu, S.; Lee, V. H. L. Structure, function, and
molecular modeling approaches to the study of the intestinal
dipeptide transporter PepT1. J . Pharm. Sci. 1998, 87, 1286-
1291.
(35) Yeung, A. K.; Basu, S. K.; Wu, S. K.; Chu, C.; Okamoto, C. T.;
Hamm-Alvarez, S. F.; von Grafenstein, H.; Shen, W. C.; Kim,
K. J .; Bolger, M. B.; Haworth, I. S.; Ann, D. K.; Lee, V. H. L.
Molecular identification of a role for tyrosine 167 in the function
of the human intestinal proton-coupled dipeptide transporter
(hPepT1). Biochem. Biophys. Res. Commun. 1998, 250, 103-
107.
(36) Kulkarni, A. A.; Haworth, I. S.; Lee, V. H. L. Transmembrane
segment 5 of the dipeptide transporter hPepT1 forms a part of
the substrate translocation pathway. Biochem. Biophys. Res.
Commun. 2003, 306, 177-185.
(37) Kulkarni, A. A.; Haworth, I. S.; Uchiyama, T.; Lee, V. H. L.
Analysis of transmembrane segment 7 of the dipeptide trans-
porter hPepT1 by cysteine-scanning mutagenesis. J . Biol. Chem.
2003, 278, 51833-51840.
(38) Bailey, P. D.; Boyd, C. A. R.; Bronk, J . R.; Collier, I. D.; Meredith,
D.; Morgan, K. M.; Temple, C. S. How to make drugs orally
active: A substrate template for peptide transporter PepT1.
Angew. Chem., Int. Ed. Engl. 2000, 39, 506-508.
(39) Gebauer, S.; Knu¨tter, I.; Hartrodt, B.; Brandsch, M.; Neubert,
K.; Thondorf, I. Three-dimensional quantitative structure-
activity relationship analyses of peptide substrates of the
mammalian H+/peptide cotransporter PEPT1. J . Med. Chem.
2003, 46, 5725-5734.
(10) Ezra, A.; Hoffman, A.; Breuer, E.; Alferiev, I. S.; Mo¨nkko¨nen,
J .; El Hanany-Rozen, N.; Weiss, G.; Stepensky, D.; Gati, I.;
Cohen, H.; To¨rma¨lehto, S.; Amidon, G. L.; Golomb, G. A peptide
prodrug approach for improving bisphosphonate oral absorption.
J . Med. Chem. 2000, 43, 3641-3652.
(11) Thomsen, A. E.; Friedrichsen, G. M.; Sørensen, A. H.; Andersen,
R.; Nielsen, C. U.; Brodin, B.; Begtrup, M.; Frokjaer, S.;
Steffansen, B. Prodrugs of purine and pyrimidine analogues for
the intestinal di/tri-peptide transporter PepT1: Affinity for
hPepT1 in Caco-2 cells, drug release in aqueous media and in
vitro metabolism. J . Controlled Release 2003, 86, 279-292.
(12) Daniel, H.; Morse, E.; Adibi, S. The high and low affinity
transport systems for dipeptides in kidney brush border mem-
brane respond differently to alterations in pH gradient and
membrane potential. J . Biol. Chem. 1991, 266, 19917-19924.
(13) Nielsen, C. U.; Brodin, B.; J ørgensen, F. S.; Frokjaer, S.;
Steffansen, B. Human peptide transporters: Therapeutic ap-
plications. Expert Opin. Ther. Pat. 2002, 12, 1329-1350.
(14) Våbenø, J .; Lejon, T.; Nielsen, C. U.; Steffansen, B.; Chen, W.;
Ouyang, H.; Borchardt, R. T.; Luthman, K. Phe-Gly dipeptido-
mimetics designed for the di-/tripeptide transporters PEPT1 and
PEPT2: Synthesis and biological investigations. J . Med. Chem.
2004, 47, 1060-1069.
(15) Taub, M. E.; Larsen, B. D.; Steffansen, B.; Frokjaer, S. â-Car-
boxylic acid esterified D-Asp-Ala retains a high affinity for the
oligopeptide transporter in Caco-2 monolayers. Int. J . Pharm.
1997, 146, 205-212.
(16) Steffansen, B.; Lepist, E. I.; Taub, M. E.; Larsen, B. D.; Frokjaer,
S.; Lennerna¨s, H. Stability, metabolism and transport of D-Asp-
(OBzl)-Ala - a model prodrug with affinity for the oligopeptide
transporter. Eur. J . Pharm. Sci. 1999, 8, 67-73.
(17) Lepist, E. I.; Kusk, T.; Larsen, D. H.; Andersen, D.; Frokjaer,
S.; Taub, M. E.; Veski, P.; Lennerna¨s, H.; Friedrichsen, G.;
Steffansen, B. Stability and in vitro metabolism of dipeptide
model prodrugs with affinity for the oligopeptide transporter.
Eur. J . Pharm. Sci. 2000, 11, 43-50.
(18) Friedrichsen, G. M.; Nielsen, C. U.; Steffansen, B.; Begtrup, M.
Model prodrugs designed for the intestinal peptide transporter.
A synthetic approach for coupling of hydroxy-containing com-
pounds to dipeptides. Eur. J . Pharm. Sci. 2001, 14, 13-19.
(19) Nielsen, C. U.; Andersen, R.; Brodin, B.; Frokjaer, S.; Steffansen,
B. Model prodrugs for the intestinal oligopeptide transporter:
Model drug release in aqueous solution and in various biological
media. J . Controlled Release 2001, 73, 21-30.
(20) Nielsen, C. U.; Andersen, R.; Brodin, B.; Frokjaer, S.; Taub, M.
E.; Steffansen, B. Dipeptide model prodrugs for the intestinal
oligopeptide transporter. Affinity for and transport via hPepT1
in the human intestinal Caco-2 cell line. J . Controlled Release
2001, 76, 129-138.
(21) Thomsen, A. E. Dissertation: Prodrugs for the di/ tripeptide
transporter, PEPT1; The Danish University of Pharmaceutical
Sciences: Copenhagen, 2003.
(40) Weitz, I. S.; Pellegrini, M.; Mierke, D. F.; Chorev, M. Synthesis
of a trisubstituted 1,4-diazepin-3-one-based dipeptidomimetic as
a novel molecular scaffold. J . Org. Chem. 1997, 62, 2527-2534.
(41) Mu¨ller, P.; Bolea, C. Carbenoid pathways in copper-catalyzed
intramolecular cyclopropanations of phenyliodonium ylides.
Helv. Chim. Acta 2001, 84, 1093-1111.
(42) Nielsen, C. U.; Amstrup, J .; Steffansen, B.; Frokjaer, S.; Brodin,
B. Epidermal growth factor inhibits glycylsarcosine transport
and hPepT1 expression in a human intestinal cell line. Am. J .
Physiol. Gastroint. Liver Physiol. 2001, 281, G191-G199.
(43) Cheng, Y. C.; Prusoff, W. H. Relationship between the inhibition
constant (KI) and the concentration of inhibitor which causes
50% inhibition (I50) of an enzymatic reaction. Biochem. Phar-
macol. 1973, 22, 3099-3108.
(22) This has been demonstrated for a number of BnOH model
prodrugs; see refs 17 and 19.
(23) Sugawara, M.; Huang, W.; Fei, Y. L.; Leibach, F. H.; Ganapathy,
V.; Ganapathy, M. E. Transport of valganciclovir, a ganciclovir
prodrug, via peptide transporters PEPT1 and PEPT2. J . Pharm.
Sci. 2000, 89, 781-789.
(24) Han, H. K.; de Vrueh, R. L. A.; Rhie, J . K.; Covitz, K. M. Y.;
Smith, P. L.; Lee, C. P.; Oh, D. M.; Sade´e, W.; Amidon, G. L.
5′-Amino acid esters of antiviral nucleosides, acyclovir, and AZT
are absorbed by the intestinal PEPT1 peptide transporter.
Pharm. Res. 1998, 15, 1154-1159.
J M040780C