Recently, 1-benzyl-5-aryltetrazoles were found to be novel
antagonists for the P2X7 receptor.7
Metal Triflate Catalyzed Reactions of Alkenes,
NBS, Nitriles, and TMSN3: Synthesis of
1,5-Disubstituted Tetrazoles
Intheliterature,1H-tetrazoles8 andpolycyclicfusedtetrazoles6b,9
are mostly prepared by inter- and intramolecular [3 + 2]-cy-
cloaddition, respectively, of azides and nitriles. 1,5-Disubstituted
tetrazoles are usually obtained from secondary amides or
thioamides on reaction with PCl5/HN3,3 TMSN3/Ph3P/DEAD,10
and TMSN3/Et3N/Hg(II),11 mostly under noncatalytic conditions.
Hassner reported AgClO4-promoted reaction of alkenes, halo-
gens (Br2 or I2), nitriles, and NaN3, noting the ability to produce
the 1,5-disubstituted tetrazoles.12 Many methods for the synthesis
of tetrazoles are known, but due to their importance, the
development of new synthetic approaches using mild reaction
conditions remains an active research area. In this paper, we
describe a metal triflate catalyzed one-pot reaction of alkenes,
N-bromosuccinimide (NBS), nitriles, and trimethylsilyl azide
(TMSN3) for the expedient synthesis of 1,5-disubstituted tet-
razoles containing an additional R-bromo functionality of the
N1-alkyl substituent that might provide a further avenue for
structural elaboration.
Saumen Hajra,* Debarshi Sinha, and
Manishabrata Bhowmick
Department of Chemistry, Indian Institute of Technology,
Kharagpur 721 302, India
ReceiVed NoVember 27, 2006
We are involved in stereoselective 1,2-halo functionalization
of alkenes and recently found that Lewis acids, in particular,
metal triflates, activate NBS to facilitate the formation of
halonium ions from alkenes.13 Accordingly, we anticipated that
a suitable metal triflate might catalyze the reaction of alkenes,
NBS, nitriles, and TMSN3 and that would produce the 1,5-
A versatile and highly efficient protocol for the synthesis of
1,5-disubstituted tetrazoles has been developed by metal
triflate catalyzed one-pot reaction of alkenes, NBS, nitriles,
and TMSN3. Among the metal triflates, Zn(OTf)2 was found
to be the best catalyst. Use of different combinations of
alkenes and nitriles generate a variety of 1,5-disubstituted
tetrazoles containing an additional R-bromo functionality of
the N1-alkyl substituent.
(6) (a) May, B. C. H.; Abell, A. D. J. Chem. Soc., Perkin. Trans. 1 2002,
172-178. (b) Davis, B.; Brandstetter, T. W.; Smith, C.; Hackett, L.;
Winchester, B. G.; Fleet, G. W. J. Tetrahedron Lett. 1995, 36, 7507-7510.
(c) Brandstetter, T. W.; Davis, B.; Hyestt, D.; Smith, C.; Hackett, L.;
Winchester, B. G.; Fleet, G. W. J. Tetrahedron Lett. 1995, 36, 7511-7514.
(d) Zabrocki, J.; Smith, D.; Dunbar, J. B., Jr.; Marshall, K. W.; Toth,
M. V.; Marshall, G. R. J. Org. Chem. 1992, 57, 202-209. (e) Ermert, P.;
Vasella, A. HelV. Chim. Acta 1991, 74, 2043. (f) Lebl, M.; Slaninova, J.;
Johnson, R. L. Int. J. Pept. Protein Res. 1990, 33, 16. (g) Poonian, M. S.;
Nowoswiat, E. F.; Blount, J. F.; Williams, T. H.; Pitcher, R. G.; Kramer,
M. J. J. Med. Chem. 1976, 19, 286-290. (h) Poonian, M. S.; Nowoswiat,
E. F.; Blount, J. F.; Kramer, M. J. J. Med. Chem. 1976, 19, 1017-1020. (i)
Herbst, R. M.; Froberger, C. F. J. Org. Chem. 1957, 22, 1050-1053.
(7) Nelso, D. W.; Greg, R. J.; Kort, M. E.; Perez-Medrano, A.; Voight,
E. A. Wang, Y.; Grayson, G.; Namvic, M. T.; Donnelly-Roberts, D. L.;
Nifratos, W.; Honore, P.; Jarvis, M. F.; Faltynek, C. R.; Carroll, W. A.
J. Med. Chem. 2006, 49, 3659-3666.
Tetrazoles are increasingly important heterocyclic compounds
in medicinal chemistry.1 5-Substituted 1H- and 1,5-disubstituted
tetrazoles are often used as metabolically stable surrogates for
the carboxylic acid group and for the cis-amide bond,
respectively.2-4 An enormous number of tetrazole-containing
biologically active compounds are known in the literature.5,6
(1) (a) Moderhack, D. J. Prakt. Chem. 1998, 340, 687-709. (b) Butler,
R. N. In ComprehensiVe Heterocyclic Chemistry II; Katritzky, A. R., Rees,
C. W., Scriven, E. F. V., Eds.; Pergamon Press: New York, 1996; Vol. 4,
pp 621-678. (c) Wittenberger, S. J. Org. Prep. Proced. Int. 1994, 26, 499-
531. (d) Butler, R. N. In ComprehensiVe Heterocyclic Chemistry; Potts,
K. T., Ed.; Pergamon Press: New York, 1984; Vol. 5, pp 791-838.
(2) Herr, R. J. Bioorg. Med. Chem. 2002, 10, 3379-3393 and references
therein.
(8) (a) Kivrakidou, O.; Brase, S.; Hulshorst, F.; Griebenow, N. Org. Lett.
2004, 6, 1143-1146. (b) Demko, Z.; Sharpless, K. B. Org. Lett. 2002, 4,
2525-2527. (c) Demko, Z.; Sharpless, K. B. J. Org. Chem. 2001, 66, 7945-
7950. (d) Alterman, M.; Hallberg, A. J. Org. Chem. 2000, 65, 7984-7989.
(e) Wittenberger, S. J.; Donner, B. G. J. Org. Chem. 1993, 58, 4139-
4141. (f) Garbrecht, W. L.; Herbst, R. M. J. Org. Chem. 1953, 18, 1269-
1282. (g) Herbst, R. M.; Roberts, C. W.; Harvill, E. J. J. Org. Chem. 1951,
16, 139-149.
(9) (a) Couty, F.; Durrat, F.; Prim, D. Tetrahedron Lett. 2004, 45, 3725-
3728. (b) Demko, Z.; Sharpless, K. B. Org. Lett. 2001, 3, 4091-4094. (c)
Porter, T. C.; Smalley, R. K.; Teguiche, M.; Purwoo, B. Synthesis 1997, 7,
773-777. (d) Garanti, L.; Zecchi, G. J. Org. Chem. 1980, 45, 4767-4769.
(10) (a) Duncia, J. V.; Pierce, M. E. Santella, J. B., III. J. Org. Chem.
1991, 56, 2395-2400. (b) Athanassopoulos, C. M.; Garnelis, T.; Vahliotis,
D.; Papaioannou, D. Org. Lett. 2005, 7, 561-564.
(11) (a) Pandey, N.; Meyyappan, M.; Vasella, A. HelV. Chim. Acta 2000,
83, 513-538. (b) Batey, R. A.; Powell, D. A. Org. Lett. 2000, 2, 3237-
3240.
(3) Yu, K. L.; Johnson, R. L. J. Org. Chem. 1987, 52, 2051-2059.
(4) Zabrocki, J.; Smith, D.; Dunbar, J. B., Jr.; Iijima, H.; Marshall,
G. R. J. Am. Chem. Soc. 1988, 110, 5875-5880.
(5) (a) Wexler, R. R.; Greenlee, W. J.; Irvin, J. D.; Goldberg, M. R.;
Predergast, K.; Smith, R. D.; Timmermans, P. B. M. W. M. J. Med. Chem.
1996, 39, 625-656. (b) Bondensgaard, K.; Ankersen, M.; Thogersen, H.;
Hansen, B. S.; Wulf, B. S.; Bywater, R. P. J. Med. Chem. 2004, 47, 888-
899. (c) Kozikowski, A. P.; Zhang, J.; Nan, F.; Petukhov, P. A.;
Grajkowaska, E.; Wroblewski, J. T.; Yamamoto, T.; Bzdega, T.; Wrob-
lewska, B.; Neale, J. H. J. Med. Chem. 2004, 47, 1729-1738. (d) Burg,
D.; Hameetman, L.; Filippov, D. V.; van der Marel, G. A.; Mulder, G. J.
Bioorg. Med. Chem. Lett. 2002, 12, 1579-1582. (e) De Lombaert, S.;
Blanchard, L.; Stamford, L. B.; Tan, J.; Wallace, E. M.; Satoh, Y.; Fitt, J.;
Hoyer, D.; Simonsbergen, D.; Moliterni, J.; Marcopoulos, N.; Savage, P.;
Chou, M.; Trapani, A. J.; Jeng, A. Y. J. Med. Chem. 2000, 43, 488-504.
(f) De Lombaert, S.; Blanchard, L.; Tan, J.; Sakane, Y.; Bery, C.; Ghai,
R. D. Bioorg. Med. Chem. Lett. 1995, 5, 145-150.
(12) Hassner, A.; Levy, L. A.; Gault, R. Tetrahedron Lett. 1966, 7, 3119-
3123.
(13) (a) Hajra, S.; Bhowmick, M.; Karmakar, A. Tetrahedron Lett. 2005,
46, 3073-3077. (b) Hajra, S.; Maji, B.; Karmakar, A. Tetrahedron Lett.
2005, 46, 8599-8603. (c) Hajra, S.; Sinha, D.; Bhowmick, M. Tetrahedron
Lett. 2006, 47, 7017-7019. (d) Hajra, S.; Sinha, D.; Bhowmick, M. J. Org.
Chem. 2006, 71, 9237-9240.
10.1021/jo062432j CCC: $37.00 © 2007 American Chemical Society
Published on Web 02/01/2007
1852
J. Org. Chem. 2007, 72, 1852-1855