6170
G. Semple et al. / Bioorg. Med. Chem. Lett. 19 (2009) 6166–6171
doses of 4x produced a strikingly opposing pattern of effect, with
maximal decreases in food intake becoming apparent after only 2
and 3 days, respectively, although statistical separation from vehi-
cle was achieved on day 2 at both doses, and continued throughout
the dosing period. This pattern of food intake change resulted in
progressive weight loss. After 14 days of dosing, the highest dose
group was deemed to have lost too much weight too rapidly
(>15% relative to control) and was allowed to recover. Food intake
gradually returned to normal and the body weight decline was re-
versed. A similar effect was observed in the 10 mg/kg dose group
where after 28 days of dosing a 17% decrease in body weight rela-
tive to the vehicle group was observed. A subgroup of these ani-
mals was allowed to recover after this period and in this case we
observed a modest but statistically significant rebound in daily en-
ergy and water intake, resulting in a recovery of body weights to
control values over the ensuing 2 two weeks. The third dose group
of 5 mg/kg failed to achieve statistical significance in terms of
decreasing food intake, although a trend was observed resulting,
by day 28, in a statistically significant decrease in body weight rel-
ative to the vehicle group (À5.4%). The 1 mg/kg dose had no effect
on any of the measured parameters.
The clear difference in the pattern of food intake and body
weight changes between rats treated with sibutramine, which is
known to act centrally, and those treated with 4x, was immedi-
ately suggestive that the effect of the latter may not be centrally
mediated. Indeed the pattern of effect on food intake and body
weight much more closely resembled that observed with exen-
din-4, which is known to act by inhibiting gastric emptying. In-
deed, when we examined the pharmacokinetic data for 4x and
related compounds, it was clear that the scaffold change we had
engineered did not enhance the brain partitioning properties in
rat for this series over ATC0175. For compound 4x for example,
the brain to plasma ratio remained significantly below unity at
all time points tested (Table 4), and below concentrations previ-
ously believed to be required for in vivo efficacy of MCH-R1 antag-
onists. McBriar et al. demonstrated a requirement for 70% receptor
occupancy at a 6 h time point with chronic efficacy on food intake
and body weight in rats with MCH-R1 antagonists.17 In addition,
with another series of MCH-R1 antagonists, very high concentra-
an off-target effect. In 14-day toxicity studies, no significant effects
(other than a decrease in food intake) were observed at doses up to
100 mg/kg/day. Although a non-specific toxicity effect can not be
completely ruled out, we have since further investigated other pos-
sible mechanisms of action and these experiments will be de-
scribed in due course.
In this present investigation we have again demonstrated the
importance of correlating the pharmacokinetic and pharmacody-
namic effects on food intake in rodents to try and confirm that
the observed effects are specific to the molecular target thought
to be responsible.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Kawauchi, H.; Kawazoe, I.; Tsubokawa, M.; Kishida, M.; Baker, B. I. Nature 1983,
305, 321.
2. Bittencourt, J. C.; Presse, F.; Arias, C.; Peto, C.; Vaughan, J.; Nahon, J. L.; Vale, W.;
Sawchenko, P. E. J. Comp. Neurol. 1992, 319, 218.
3. Shimada, M.; Tritos, N. A.; Lowell, B. B.; Flier, J. S.; Maratos-Flier, E. Nature 1998,
396, 670.
4. (a) Chen, Y.; Hu, C.; Hsu, C.-K.; Zhang, Q.; Bi, C.; Asnicar, M.; Hsiung, H. M.; Fox,
N.; Slieker, L. J.; Yang, D. D.; Heiman, M. L.; Shi, Y. Endocrinology 2002, 143,
2469; (b) Marsh, D. J.; Weingarth, D. T.; Novi, D. E.; Chen, H. Y.; Trumbauer, M.
E.; Chen, A. S.; Guan, X.-M.; Jiang, M. M.; Feng, Y.; Camacho, R. E.; Shen, Z.;
Frazier, E. G.; Yu, H.; Metzger, J. M.; Kuca, S. J.; Shearman, L. P.; Gopal-Truter, S.;
MacNeil, D. J.; Strack, A. M.; MacIntyre, D. E.; Van der Ploeg, L. H. T.; Qian, S.
Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 3240.
5. Saito, Y.; Nothacker, H. P.; Wang, Z.; Lin, S. H.; Leslie, F.; Civelli, O. Nature 1999,
400, 265.
6. Shearman, L. P.; Camacho, R. E.; Stribling, D. S.; Zhou, D.; Bednarek, M. A.;
Hreniuk, H. L.; Feighner, S. D.; Tan, C. P.; Howard, A. H.; Van der Ploeg, L. H. T.;
MacIntyre, D. E.; Hickey, G. J.; Strack, A. M. Eur. J. Pharmacol. 2003, 475, 37.
7. Borowsky, B.; Durkin, M. M.; Ogozalek, K.; Marzabadi, M. R.; DeLeon, J.;
Heurich, R.; Lichtblau, H.; Shaposhnik, Z.; Daniewska, I.; Blackburn, T. P.;
Branchek, T. A.; Gerald, C.; Vaysse, P. J.; Forray, C. Nat. Med. 2002, 8, 825.
8. (a) Takekawa, S.; Asami, A.; Ishihara, Y.; Terauchi, J.; Kato, K.; Shimomura, Y.;
Mori, M.; Murakoshi, H.; Kato, K.; Suzuki, N.; Nishimura, O.; Fujino, M. Eur. J.
Pharmacol. 2002, 438, 129; (b) Souers, A. J.; Gao, J.; Brune, M.; Bush, E.; Wodka,
D.; Vasudevan, A.; Judd, A. S.; Mulhern, M.; Brodjian, S.; Dayton, B.; Shapiro, R.;
Hernandez, L. E.; Marsh, K. C.; Sham, H. L.; Collins, C. A.; Kym, P. R. J. Med. Chem.
2005, 48, 1318; (c) McBriar, M. D.; Guzik, H.; Xu, R.; Paruchova, J.; Li, S.; Palani,
A.; Clader, J. W.; Greenlee, W. J.; Hawes, B. E.; Kowalski, T. J.; O’Neill, K.; Spar, B.;
Weig, B. J. Med. Chem. 2005, 48, 2274; (d) Palani, A.; Shapiro, S.; McBriar, M. D.;
Clader, J. W.; Greenlee, W. J.; Spar, B.; Kowalski, T. J.; Farley, C.; Cook, J.; van
Heek, M.; Weig, B.; O’Neill, K.; Graziano, M.; Hawes, B. J. Med. Chem. 2005, 48,
4746; (e) Kym, P. R.; Iyengar, R.; Souers, A. J.; Lynch, J. K.; Judd, A. S.; Gao, J.;
Freeman, J.; Mulhern, M.; Zhao, G.; Vasudevan, A.; Wodka, D.; Blackburn, C.;
Brown, J.; Che, J. L.; Cullis, C.; Lai, S. J.; LaMarche, M.; Marsilje, T.; Roses, J.; Sells,
T.; Geddes, B.; Govek, E.; Patane, M.; Fry, D.; Dayton, B. D.; Brodjian, S.; Falls, D.;
Brune, M.; Bush, E.; Shapiro, R.; Knourek-Segel, V.; Fey, T.; McDowell, C.;
Reinhart, G. A.; Preusser, L. C.; Marsh, K.; Hernandez, L.; Sham, H. L.; Collins, C.
A. J. Med. Chem. 2005, 48, 5888; (f) Mashiko, S.; Ishihara, A.; Gomori, A.; Moriya,
R.; Ito, M.; Iwaasa, H.; Matsuda, M.; Feng, Y.; Shen, Z.; Marsh, D. J.; Bednarek, M.
A.; MacNeil, D. J.; Kanatani, A. Endocrinology 2005, 146, 3080.
9. Thomas, L.; Reichl, R.; Mueller, S. G.; Stenkamp, D.; Schindler, M. A novel MCH-
1R antagonist reduces body weight in Rhesus monkeys. NAASO meeting, 2005,
P2-224.
10. Tran, T.-A; Beeley, N. R. A.; Thomsen, W.; Lin, I.; Sekiguchi, Y. Discovery of
MCH-R1 antagonists from GPCR-directed libraries. 228th ACS National
Meeting, Philadelphia, PA, USA, August 22–26, 2004, MEDI-051.
11. Kanuma, K.; Omodera, K.; Nishiguchi, M.; Funakoshi, T.; Chaki, S.; Semple, G.;
Tran, T.-A.; Kramer, B.; Hsu, D.; Casper, M.; Thomsen, W.; Beeley, N. R. A.;
Sekiguchi, Y. Bioorg. Med. Chem. Lett. 2005, 15, 2565.
12. Kanuma, K.; Omodera, K.; Nishiguchi, M.; Funakoshi, T.; Chaki, S.; Semple, G.;
Tran, T.-A.; Kramer, B.; Hsu, D.; Casper, M.; Thomsen, W.; Sekiguchi, Y. Bioorg.
Med. Chem. Lett. 2005, 15, 3853.
tions were required (>10 lg/mg in brain i.e., 1000-fold higher than
in this study) to show a significant chronic effect on food intake
and body weight following once daily oral dosing in rats.18 Hence,
for compound 4x and related analogues we concluded, based on
the low levels of brain concentrations observed, that the effect
on feeding is most likely not mediated by the central MCH-R1.
In summary, we have demonstrated that the in vitro potency of
ATC0175 at the h-MCH-R1 may be preserved by removing the
fused ring of the quinazoline and replacing it with a methyl substi-
tuent, resulting in a series of pyrimidine analogues. Several exam-
ples from this series had greatly improved receptor selectivity
profiles compared to ATC0175. However, although compounds
from this series decreased food intake in vivo, this modification
did not provide compounds with good brain partitioning. Given
that central exposure appears to be a requirement for MCH-R1
antagonist-induced decreases in food intake, we believe that the
profound and dose-dependent decrease in energy intake and body
weight in a 28-day DIO rat model observed for 4x was most likely
Table 4
13. a Semple, G.; Kramer, B.; Hsu, D.; Casper, M.; Strah-Pleynet, S.; Thomsen, W.;
Lin, I. -L.; Beeley, N.; Bjenning, C.; Whelan, K.; Tran, T.-A.; Sekiguchi, Y.;
Kanuma, K.; Omodera, K.; Nishiguchi, M.; Funakoshi T.; Chaki, S. Identification
and biological activity of a new series of antagonists of hMCH-R1 228th ACS
National Meeting, Philadelphia, PA, USA, August 22–26, 2004, MEDI-7.;
Brain and plasma concentrations of 4x compared to ATC0175 following a per oral
dose of 10 mg/kg to fed male Sprague-Dawley rats
PLASMA (ng/mL)
4 h
BRAIN (ng/g)
4 h
2 h
50
109
2 h
ATC0175: An Orally Active Melanin-Concentrating Hormone Receptor
1
Antagonist for the Potential Treatment of Depression and Anxiety: (b) Chaki,
S.; Yamaguchi, J.; Yamada, H.; Thomsen, W.; Tran, T.; Semple, G.; Sekiguchi, Y.
CNS Drug Rev. 2005, 11, 341.
4x
ATC0175
63
101
9
55
10
70