C O M M U N I C A T I O N S
In summary, we have successfully developed a practical enantio-
selective Michael addition of 1,3-dicarbonyl compounds with nitro-
alkenes to the optically active nitroalkanes with up to 98% ee. This
reaction is applicable to the synthesis of the intermediate of the
chiral drug, rolipram.4b,12 A large-scale reaction of 3-cyclopentyl-
oxy-4-methoxy-â-nitrostyrene4b (2.1 g) with 3a with the chiral
Ru catalyst (1f) (alkene/3a/Ru ) 100:120:1) at -20 °C gave the
optically active (R)-nitro compound4b in 94% yield (2.97 g) with
95% ee.
Figure 1. Effect of the structures of the Michael donors. The reaction
of â-keto esters gave a 1:1-1.5 mixture of diastereomers with a single
stereogenic center on benzylic carbon of the Michael adducts.
Acknowledgment. This work was financially supported by a
grant-in-aid from the Ministry of Education, Science, Sports and
Culture of Japan (No. 14078209) and partially supported by The
21st Century COE Program.
p-fluoro-, and dioxolane-substituted â-nitrostyrene gave the Michael
adducts with 92, 93, 93, and 95% ee, respectively. Similarly, the
nitroalkenes with hetero aromatic rings, thienyl (2f) and furyl (2g),
provided the Michael adducts (4fa, 4ga) in almost quantitative yield
with 97 and 98% ee, respectively, as shown in Table 1.
Supporting Information Available: Experimental procedures of
the catalytic Michael reaction and spectroscopic data for compounds
4xy (PDF). This material is available free of charge via the Internet at
The stereochemical outcome of the conjugate addition was found
to be significantly influenced by the structure of the Michael donors.
The sterically more congested methyl-substituted dimethyl malonate
3c readily reacted with trans-â-nitrostyrene 2a in toluene containing
1f to give the corresponding adduct (4ac) with 97% ee and in 99%
yield (Table 1). When â-keto esters (3d-g) (2a/keto ester/Ru )
50:60:1, -20 °C, 24 h) were used, the conjugate addition to 2a
gave the corresponding adducts in 95-97% yield as shown in
Figure 1. The enantioselectivity of the reaction was markedly
improved by increasing the bulkiness of the acyl group in the keto
esters. The reaction of acetoacetate 3d gave the product (4ad) with
58% ee, while the enantiomeric purity of the Michael adducts
increased in the order CH3 < C2H5 < C6H5 < CH(CH3)2, the ee
value reaching up to 94% with the keto ester 3f. This conjugate
addition to 2a became even more appealing when 1,3-diketones
were used as donors. The reaction of acetylacetone 3h gave the
Michael adduct in a reasonably high yield but with a poor ee, while
sterically bulkier diketone 3j provided satisfactory results in terms
of the yield and enantioselectivity, the ee value reaching to 97%
(Figure 1).
Although we have shown the possibility of the C-bound Ru
malonato complex (5a, R ) OCH3) as catalytic active intermediates
for the conjugate addition of malonates to cyclic enones, on the
basis of the X-ray crystallographic analysis and NMR investigation
of the Ru malonato complex derived from the complex 1h,9a,c the
reaction mechanism of the Michael reaction with the chiral Ru
amido complex is still controversial. A marked positive effect of
the steric hindrance in the â-keto esters and 1,3-diketones on the
stereochemical outcome of the reaction as discussed above suggests
that the reaction may proceed through C-bound or O-bound Ru
enolato intermediates (5a or 5b) depending on the structures of
References
(1) Recent leading reviews of asymmetric Michael addition to nitroalkenes:
(a) Berner, O. M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002,
1877. (b) Kranse, N.; Hoffmann-Ro¨der, A. Synthesis 2001, 171.
(2) Cu-catalyzed 1,4-addition of diethylzinc: (a) Sewald, N.; Wendisch, V.
Tetrahedron: Asymmetry 1998, 9, 1341. (b) Alexakis, A.; Benhaim, C.
Org. Lett. 2000, 2, 2579. (c) Duursma, A.; Minnaard, A. J.; Feringa, B.
L. Tetrahedron 2002, 58, 5773. (d) Duursma, A.; Minnaard, A. J.; Feringa,
B. L. J. Am. Chem. Soc. 2003, 125, 3700. (e) Luchaco-Cullis, C. A.;
Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 8192.
(3) Ti catalysts: Scha¨fer, H. S.; Seebach, D. Tetrahedron 1995, 51, 2305.
(4) Mg catalysts: (a) Jianguo, Ji.; Barnes, D. M.; Zhang, J.; King, S. A.;
Wittenberger, S. J.; Morton, H. E. J. Am. Chem. Soc. 1999, 121, 10215.
(b) Barnes, D. M.; Ji, J.; Fickes, M, G.; Fitzgerald, M. A.; King, S. A.;
Morton, H. E.; Plagge, F. A.; Preskill, M.; Wagaw, S. H.; Wittenberger,
S. J.; Zhang, J. J. Am. Chem. Soc. 2002, 124, 13097.
(5) Rh catalysts: Hayashi, T.; Senda, T.; Ogasawara, M. J. Am. Chem. Soc.
2000, 122, 10716.
(6) Organocatalysts: (a) Corey, E. J.; Zhang, F.-Y. Org. Lett. 2000, 2, 4257.
(b) Alexakis, A.; Andrey, O. Org. Lett. 2002, 4, 3611. (c) Okino, T.;
Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672. (d)
Andrey, O.; Alexakis, A.; Bernardinelli, G. Org. Lett. 2003, 5, 2559. (e)
Brunner, H.; Kimel, B. Monatsh. Chem. 1996, 127, 1063.
(7) Recent leading reviews: (a) Shibasaki, M.; Yoshikawa, N. Chem. ReV.
2002, 102, 2187-2209. (b) Jacobsen, E. N., Pfaltz, A., Yamamoto, H.,
Eds. ComprehensiVe Asymmetric Catalysis; Springer; Berlin, 1999; Vol.
3, pp 1105. (c) Sibi, M.; Manyem, S. Tetrahedron 2000, 56, 8033. (d)
Alexakis, A.; Behhaim, C. Eur. J. Org. Chem. 2002, 3221. (e) Hayashi,
T.; Yamasaki, K. Chem. ReV. 2003, 103, 2829.
(8) (a) Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. J. Am.
Chem. Soc. 1995, 117, 7562. (b) Haack, K.-J.; Hashiguchi, S.; Fujii, A.;
Ikariya, T.; Noyori, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 285. (c)
Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97.
(9) (a) Watanabe, M.; Murata, K.; Ikariya, T. J. Am. Chem. Soc. 2003, 125,
7508. (b) Ikariya, T.; Wang, H.; Watanabe, M.; Murata, K. J. Organomet.
Chem. 2004, 689, 1377. (c) Murata, K.; Konishi, H.; Ito, M.; Ikariya, T.
Organometallics 2002, 21, 253.
(10) Effect of the solvent on the catalyst performance is dramatic. DMF and
CH3CN gave poor yields of the desired product, albeit with almost full
conversion of the nitroalkenes because of polymerization of nitroalkenes
promoted by the amido complex.
(11) O- and C-bound metal enolato complexes: (a) Burkhardt, E. R.; Doney,
J. J.; Bergman, R. G.; Heathcock, C. H. J. Am. Chem. Soc. 1987, 110,
2022. (b) Slough, G. A.; Bergman, R. G.; Heathcock, C. H. J. Am. Chem.
Soc. 1989, 111, 938. (c) Stack, J. G.; Doney, J. J.; Bergman, R. G.;
Heathcock, C. H. Organometallics 1990, 9, 453. (d) Hartwig, J. F.;
Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1990, 112, 5670. (e)
Culkin, D. A.; Hartwig, J. F. Acc. Chem Res. 2003, 36, 234 and references
therein. (f) Naota, T.; Tannna, A.; Kamuro, S.; Murahashi, S.-I. J. Am.
Chem. Soc. 2002, 124, 6842. (g) Majima, K.; Takita, R.; Okada, A.;
Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 15837.
(12) (a) Mulzer, J. J. Prakt. Chem. 1994, 336, 287. (b) Mulzer, J.; Zuhse, R.;
Schmiechen, R. Angew. Chem., Int. Ed. Engl. 1992, 31, 870.
the Michael donors.11 Further investigation, including isolation
of O-bound Ru enolato complexes as the possible catalyst inter-
mediates, as well as computational analysis on the reaction
pathways, is still required.
JA046296G
9
J. AM. CHEM. SOC. VOL. 126, NO. 36, 2004 11149