Controllable Fabrication of Various Supramolecular Nanostructures
Huang, F. Adv. Mater. 2012, 24, 362; (b) Wang, K.; Wang, C.-Y.;
Wang, Y.; Li, H.; Bao, C.-Y.; Liu, J.-Y.; Zhang, S. X.-A.; Yang,
Y.-W. Chem. Commun. 2013, 49, 10528; (c) Hu, X.-Y.; Wu, X.;
Duan, Q.; Xiao, T.; Lin, C.; Wang, L. Org. Lett. 2012, 14, 4826; (d)
Wang, X.; Han, K.; Li, J.; Jia, X.; Li, C. Polym. Chem. 2013, 4, 3998;
(e) Zhang, Z.; Luo, Y.; Chen, J.; Dong, S.; Yu, Y.; Ma, Z.; Huang, F.
Angew. Chem., Int. Ed. 2011, 50, 1397; (f) Wang, F.; Han, C.; He, C.;
Zhou, Q.; Zhang, J.; Wang, C.; Li, N.; Huang, F. J. Am. Chem. Soc.
2008, 130, 11254; (g) Wang, F.; Zhang, J.; Ding, X.; Dong, S.; Liu,
M.; Zheng, B.; Li, S.; Wu, L.; Yu, Y.; Gibson, H. W.; Huang, F.
Angew. Chem., Int. Ed. 2010, 49, 1090; (h) Zhang, M.; Xu, D.; Yan,
X.; Chen, J.; Dong, S.; Zheng, B.; Huang, F. Angew. Chem., Int. Ed.
2012, 51, 7011.
azobenzene derivative G2 that has an extra phenoxy
group connected with the azobenzene motif could form
nanorod-like aggregates, which would then transform
into disordered layered structures probably due to the
presence of cooperative intermolecular hydrogen bond-
ing and π-π interactions within the azobenzene and ben-
zamido motifs of G2. Significantly, it was found that
upon addition of WP6, which could form inclu-
sion-complex with G1 or G2, separately, the nonam-
phiphilic G1 and G2 thus converse to supramolecular
amphiphiles WP6⊃G1 and WP6⊃G2, respectively.
Consequently, both of the above WP6⊃G1 and
WP6⊃G2 complexes could assemble to form supra-
molecular binary vesicles, which will gradually trans-
form to nanotubes (WP6⊃G1) or well-ordered nano-
sheets (WP6⊃G2). The present study provides a novel
strategy for the controllable fabrication of well-defined
nanostructures.
[6] (a) Chen, S.; Ruan, Y.; Brown, J. D.; Gallucci, J.; Maslak, V.; Hadad,
C. M.; Badjić, J. D. J. Am. Chem. Soc. 2013, 135, 14964; (b) Sun, S.;
Hu, X.-Y.; Chen, D.; Shi, J.; Dong, Y.; Lin, C.; Pan, Y.; Wang, L.
Polym. Chem. 2013, 4, 2224; (c) Sun, S.; Shi, J.-B.; Dong, Y.-P.; Lin,
C.; Hu, X.-Y.; Wang, L.-Y. Chin. Chem. Lett. 2013, 24, 987.
[7] (a) Wang, C.; Wang, Z.; Zhang, X. Acc. Chem. Res. 2012, 45, 608;
(b) Zhou, T.; Yu, H.; Liu, M.; Yang, Y.-W. Chin. J. Chem. 2014, 32,
DOI: 10.1002/cjoc.201400238.
[8] (a) Saito, G.; Swanson, J. A.; Lee, K.-D. Adv. Drug. Deliver. Rev.
2003, 55, 199; (b) Gil, E. S.; Hudson, S. M. Prog. Polym. Sci. 2004,
29, 1173; (c) Ghadiali, J. E.; Stevens, M. M. Adv. Mater. 2008, 20,
4359; (d) Wang, Y.; Ma, N.; Wang, Z.; Zhang, X. Angew. Chem., Int.
Ed. 2007, 46, 2823; (e) Yan, Q.; Yuan, J.; Cai, Z.; Xin, Y.; Kang, Y.;
Yin, Y. J. Am. Chem. Soc. 2010, 132, 9268; (f) Guo, D.-S.; Wang,
K.; Wang, Y.-X.; Liu, Y. J. Am. Chem. Soc. 2012, 134, 10244.
[9] Zhang, X.; Wang, C. Chem. Soc. Rev. 2011, 40, 94.
Acknowledgement
This work was supported by the National Natural
Science Foundation of China (No. 21202083), and
Jiangsu Provincial Natural Science Foundation of
China (No. BK20140595).
[10] (a) Duan, Q.; Cao, Y.; Li, Y.; Hu, X.; Xiao, T.; Lin, C.; Pan, Y.;
Wang, L. J. Am. Chem. Soc. 2013, 135, 10542; (b) Cao, Y.; Hu,
X.-Y.; Li, Y.; Zou, X.; Xiong, S.; Lin, C.; Shen, Y.-Z.; Wang, L. J.
Am. Chem. Soc. 2014, 136, 10762.
[11] (a) Wu, X.; Duan, Q.; Ni, M.; Hu, X.; Wang, L. Chin. J. Org. Chem.
2014, 34, 437; (b) Zhang, H.; Liu, Z.; Xin, F.; Hao, A. Chin. J. Org.
Chem. 2012, 32, 219; (c) Pan, M.; Xue, M. Chin. J. Chem. 2014, 32,
128.
[12] (a) Yu, G.; Xue, M.; Zhang, Z.; Li, J.; Han, C.; Huang, F. J. Am.
Chem. Soc. 2012, 134, 13248; (b) Yu, G.; Zhou, X.; Zhang, Z.; Han,
C.; Mao, Z.; Gao, C.; Huang, F. J. Am. Chem. Soc. 2012, 134, 19489;
(c) Yang, J.; Yu, G.; Xia, D.; Huang, F. Chem. Commun. 2014, 50,
3993.
References
[1] (a) Lehn, J.-M. Supramolecular Chemistry, VCH, Weinheim, 1995;
(b) Yan, D.; Zhou, Y.; Hou, J. Science 2004, 303, 65; (c) Chen, D.;
Jiang, M. Acc. Chem. Res. 2005, 38, 494; (d) Jonkheijm, P.; van der
Schoot, P.; Schenning, A. P. H. J.; Meijer, E. W. Science 2006, 313,
80.
[2] (a) Rösler, A.; Vandermeulen, G. W. M.; Klok, H.-A. Adv. Drug De-
liver. Rev. 2001, 53, 95; (b) Sun, Y.-L.; Yang, Y.-W.; Chen, D.-X.;
Wang, G.; Zhou, Y.; Wang, C.-Y.; Stoddart, J. F. Small 2013, 9,
3224; (c) Wang, K.; Guo, D.-S.; Wang, X.; Liu, Y. ACS Nano 2011,
5, 2880; (d) Yu, S.-F.; Gu, X.; Wu, G.-L.; Wang, Z.; Wang, Y.-N.;
Gao, H.; Ma, J.-B. Acta Chim. Sinica 2012, 70, 177.
[13] Xia, D.; Yu, G.; Li, J.; Huang, F. Chem. Commun. 2014, 50, 3606.
[14] Liu, L.; Chen, Y.; Wang, L.; Meier, H.; Cao, D. Chin. J. Chem. 2013,
31, 624.
[15] Yu, G.; Han, C.; Zhang, Z.; Chen, J.; Yan, X.; Zheng, B.; Liu, S.;
Huang, F. J. Am. Chem. Soc. 2012, 134, 8711.
[3] Qin, S.; Geng, Y.; Discher, D. E.; Yang, S. Adv. Mater. 2006, 18,
2905.
[4] Kim, K. T.; Cornelissen, J. J. L. M.; Nolte, R. J. M.; van Hest, J. C.
M. Adv. Mater. 2009, 21, 2787.
[5] (a) Yan, X.; Xu, D.; Chi, X.; Chen, J.; Dong, S.; Ding, X.; Yu, Y.;
(Lu, Y.)
Chin. J. Chem. 2014, XX, 1—5
© 2014 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
5