Cyclohexynes from Iodonium Salts
A R T I C L E S
Scheme 1
be generated in solution as transient species by elimination
reactions of appropriate precursors but readily undergo oligo-
merization and reactions with nucleophiles.13,20,23 Regioselec-
tivity of nucleophilic addition to cycloalkynes was previously
noted in some examples,13 and relatively careful examinations
were made for methyl-substituted cyclohexynes, generated from
the 1-halocyclohexenes with strong bases such as t-BuOK and
t-BuONa-NaNH2 (eq 5).25,26 Under these reaction conditions,
lecular â-elimination (Scheme 1).5-7 Cyclohex-1-enyliodonium
tetrafluoroborate 1 undergoes an SN1-type solvolysis via a
cyclohexenyl cation intermediate in protic solvents (eq 3).10
Reactions of this cyclic iodonium salt with nucleophiles/bases
are now further investigated, and a new type of substitution via
an elimination-addition (EA) mechanism with a cyclohexyne
intermediate to give ipso and cine products11 will be presented
in this paper (eq 4).12
cyclohexa-1,2-diene was also formed.30,31 Cycloalkynes are
known to isomerize to cycloalka-1,2-dienes under strongly basic
conditions. The ratio of ipso/cine substitution products was
found to change from 98/2 to 56/44 depending on the reaction
conditions25,26 probably due to the changing ratio of cyclohex-
yne/cyclohexa-1,2-diene intermediates. The intrinsic regiose-
lectivity of nucleophilic addition to cyclohexyne is unknown
for this reason. Thus, a mild and general method for selective
generation of cyclohexyne is needed to permit study of its
reactivity.32
Chemistry of small-ring cycloalkynes has been studied for
more than a century13,14 but still remains as a challenging
problem because of their constrained structure and high
reactivity.12-29 Among the angle-strained cycloalkynes, cyclo-
heptyne has some lifetime in solution at -25 °C,23a while
cyclohexyne is only isolable in matrixes at 77 K.24a They can
(19) For theoretical studies for cycloalkynes, see: (a) Bachrach, S. M.; Gilbert,
J. C.; Laird, D. W. J. Am. Chem. Soc. 2001, 123, 6706-6707. (b) Gilbert,
J. C.; Kirschner, S. Tetrahedron 1996, 52, 2279-2290. (c) Johnson, R. P.;
Daoust, K. J. J. Am. Chem. Soc. 1995, 117, 362-367. (d) Dewar, M. J.;
Gilbert, J. C.; Kirschner, S. J. Chem. Soc., Chem. Commun. 1994, 1105-
1106. (e) Gilbert, J. C.; Kirschner, S. Tetrahedron Lett. 1993, 34, 559-
602. (f) Gilbert, J. C.; Kirschner, S. Tetrahedron Lett. 1993, 34, 603-606.
(g) Tseng, J.; McKee, M. L.; Shevlin, P. B. J. Am. Chem. Soc. 1987, 109,
5474-5477. (h) Olivella, S.; Perica`s, M. A.; Riera, A.; Sole´, A. J. Org.
Chem. 1987, 52, 4160-4163.
(9) Okuyama, T.; Takino, T.; Sato, K.; Ochiai, M. Chem. Lett. 1997, 955-
956.
(20) Gilbert, J. C.; Baze, M. E. J. Am. Chem. Soc. 1983, 105, 664-665. Gassman,
P. G.; Valcho, J. J. J. Am. Chem. Soc. 1975, 97, 4768-4770. Montgomery,
L. K.; Applegate, L. E. J. Am. Chem. Soc. 1967, 89, 5305-5307.
(21) Strozier, R. W.; Caramella, P.; Houk, K. N. J. Am. Chem. Soc. 1979, 101,
1340-13443. Rondan, N. G.; Domelsmith, L. N.; Houk, K. N.; Bowne,
A. T.; Levin, R. H. Tetrahedron Lett. 1979, 3237-3240. Hoffmann, R.;
Imamura, A.; Hehre, W. J. J. Am. Chem. Soc. 1968, 90, 1499-1509.
(22) Ng, L.; Jordan, K. D.; Krebs, A.; Ru¨ger, W. J. Am. Chem. Soc. 1982, 104,
7414-7416.
(10) Okuyama, T.; Takino, T.; Sueda, T.; Ochiai, M. J. Am. Chem. Soc. 1995,
117, 3360-3367.
(11) The ipso and cine substitutions are designated generally for aromatic
substitutions in which the entering group takes up the same position
occupied by the leaving group and a position adjacent to it, respectively.
Gold, V. Pure Appl. Chem. 1983, 55, 1281-1371.
(12) For a preliminary account of this paper, see: Fujita, M.; Sakanishi, Y.;
Kim, W. H.; Okuyama, T. Chem. Lett. 2002, 908-909.
(23) (a) Wittig, G.; Meske-Schu¨ller, J. Liebigs Ann. Chem. 1968, 711, 65-75.
(b) Krebs, A.; Cholcha, W.; Mu¨ller, M.; Eicher, T.; Pielartzik, H.;
Schno¨ckel, H. Tetrahedron Lett. 1984, 25, 5027-5030.
(13) (a) Hoffmann, R. W. Dehydrobenzene and Cycloalkynes; Academic
Press: New York, 1967. (b) Krebs, A.; Wilke, J. Top. Curr. Chem. 1983,
109, 189-233. (c) Gleiter, R.; Merger, R. In Modern Acetylene Chemistry;
Stang, P. J., Diederich, F., Eds.; VCH: Weinheim, 1995; pp 285-319. (d)
Hopf, H. Classic Hydrocarbon Chemistry; Wiley-VCH: Weinheim, 2000.
(e) Sander, W. Angew. Chem., Int. Ed. Engl. 1994, 33, 1455-1456.
(14) For very early attempts to generate cycloalkynes, see: Blumethal, M. Ber.
Dtsch. Chem. Ges. 1874, 7, 1092. Markownikoff, W. J. Prakt. Chem. 1894,
49, 409. Markownikoff, W. Liebigs Ann. Chem. 1903, 59, 327.
(15) Kitamura, T.; Kotani, M.; Yokoyama, T.; Fujiwara, Y.; Hori, K. J. Org.
Chem. 1999, 64, 680-681.
(24) (a) IR detection of cyclohexyne: Wentrup, C.; Blanch, R.; Briehl, H.;
Gross,G. J. Am. Chem. Soc. 1988, 110, 1874-1880. (b) Early study for
cyclohexyne formation: Favorsky, A.; Boshowsky, W. Liebigs Ann. Chem.
1912, 390, 122.
(25) Brunet, J. J. Tetrahedron 1971, 27, 3515-3526. Fixari, B.; Brunet, J. J.;
Caube´re, P. Tetrahedron 1976, 32, 927-934.
(26) Bottini, A. T.; Corson, F. P.; Fitzgerald, R.; Frost, II, K. A. Tetrahedron
1972, 28, 4883-4904.
(27) Atanes, N.; Escudero, S.; Pe´rez, D.; Guitia´n, E.; Castedo, L. Tetrahedron
Lett. 1998, 39, 3039-3040. Shakespeare, W. C.; Johnson R. P. J. Am. Chem.
Soc. 1990, 112, 8578-8579. Cunico, R. F.; Dexheimer, E. M. J. Organomet.
Chem. 1973, 59, 153-160. Wong, H. N. C.; Ye, X.-S. J. Org. Chem. 1997,
62, 1940-1954.
(16) Laird, D. W.; Gilbert, J. C. J. Am. Chem. Soc. 2001, 123, 6704-6705.
(17) (a) Tu¨mer, F.; Taskesenligil, Y.; Balci, M. J. Org. Chem. 2001, 66, 3806-
3810. (b) Fabian, J. J. Org. Chem. 2000, 65, 8940-8947. (c) Gilbert, J.
C.; Hou, D.-R.; Grimme, J. W. J. Org. Chem. 1999, 64, 1529-1534. (d)
Marchand, A. P.; Namboothiri, I. N. N.; Ganguly, B.; Bott. S. G. J. Am.
Chem. Soc. 1998, 120, 6871-6876. (e) Gilbert, J. C.; McKinley, E. G.;
Hou, D.-R. Tetrahedron 1997, 53, 9891-9902. (f) Marchand, A. P.;
Ramanaiah, K. C. V.; Bott, S. G.; Gilbert, J. C.; Kirschner, S. Tetrahedron
Lett. 1996, 37, 8101-8104. (g) Marchand, A. P.; Kumar, K. A.; Rajagopal,
D.; Eckrich, R.; Bott, S. G. Tetrahedron Lett. 1996, 37, 467-470. (h)
Taskesenligil, Y.; Kashyap, R. P.; Watson, W. H.; Balci, M. J. Org. Chem.
1993, 58, 3216-3218. (i) Gilbert, J. C.; Baze, M. E. J. Am. Chem. Soc.
1984, 106, 1885-1886. (j) Montgomery, L. K.; Clouse, A. O.; Crelier, A.
M.; Applegate, L. E. J. Am. Chem. Soc. 1967, 89, 3453-3457. (k)
Montgomery, L. K.; Applegate, L. E. J. Am. Chem. Soc. 1967, 89, 2952-
2960. (l) Erickson, K. L.; Wolinsky, J. J. Am. Chem. Soc. 1965, 87, 1142-
1143. (m) Montogomery, L. K.; Scardiglia, F.; Roberts, J. D. J. Am. Chem.
Soc. 1965, 87, 1917-1925.
(28) (a) Fujita, M.; Sakanishi, Y.; Okuyama, T. J. Am. Chem. Soc. 2001, 123,
9190-9191. (b) Fujita, M.; Sakanishi, Y.; Nishii, M.; Okuyama, T. J. Org.
Chem. 2002, 67, 8138-8146.
(29) Fujita, M.; Ihara, K.; Kim, W. H.; Okuyama, T. Bull. Chem. Soc. Jpn.
2003, 76, 1849-1855.
(30) For cycloalka-1,2-dienes, see: (a) Johnson, R. P. Chem. ReV. 1989, 89,
1111-1124. (b) Caube´re, P. Chem. ReV. 1993, 93, 2317-2334. (c) Balci,
M.; Jones, W. M. J. Am. Chem. Soc. 1980, 102, 7607-7608. (d) Lam, B.;
Johnson, R. P. J. Am. Chem. Soc. 1983, 105, 7479-7483. (e) Angus, R.
O., Jr.; Schmidt, M. W.; Johnson, R. P. J. Am. Chem. Soc. 1985, 107,
532-537. (f) Miller, B.; Shi, X. J. Am. Chem. Soc. 1987, 109, 578-579.
(g) Jamart-Gre´goire, B.; Brosse, N.; Inelli, S.; Nardelli, M.; Caube´re, P. J.
Org. Chem. 1993, 58, 4572-4578.
(31) Wittig, G.; Fritze, Angew. Chem., Int. Ed. Engl. 1966, 5, 846. Wittig, G.;
Fittze, P. Liebigs Ann. Chem. 1968, 711, 82-87.
(32) (a) Metal ion can also affect reactivity of cycloalkynes. Lithium complex
of cyclopentyne has been reported.17c,32b (b) Gilbert, J. C.; Hou, D.-R. J.
Org. Chem. 2003, 68, 10067-10072.
(18) For recent examples of synthetic application of cycloalkynes, see: (a) Adam,
W.; Bosio, S. G.; Fro¨hling, B.; Leusser, D.; Stalke, D. J. Am. Chem. Soc.
2002, 124, 8316-8320. (b) Iglesias, B.; Pena, D.; Pe´rez, D.; Guitia´n, E.;
Castedo, L. Synlett 2000, 486-488.
9
J. AM. CHEM. SOC. VOL. 126, NO. 24, 2004 7549