4898
M. Lamberto et al. / Tetrahedron Letters 46 (2005) 4895–4899
Chapter 13; (d) Mochalin, V. B.; Porshnev, Yu. N. Russ.
Chem. Rev. 1977, 46, 530.
250
200
150
100
50
2. For recent examples, see: (a) Ito, S.; Inabe, H.; Okujima,
T.; Morita, N.; Watanbe, M.; Imafuku, K. Tetrahedron
Lett. 2000, 41, 8343; (b) Ohta, A.; Yamaguchi, K.;
Fujisawa, N.; Yamashita, Y.; Fujimori, K. Heterocycles
2001, 54, 377; (c) Wang, F.; Lai, Y.-H. Macromolecules
2003, 36, 536; (d) Wang, F.; Lai, Y.-H.; Han, M.-Y. Org.
Lett. 2003, 5, 4791; (e) Ito, S.; Inabe, H.; Morita, N.; Ohta,
K.; Kitamura, T.; Imafuku, K. J. Am. Chem. Soc. 2003,
125, 1669.
HOOC
COOH
1-COOH (2.5 x 10-5M)
1-COOH (5 x 10-5M) + TiO2 (500 mg/L)
3. (a) Beer, M.; Longuet-Higgins, H. C. J. Chem. Phys. 1955,
23, 1390; (b) Viswath, G.; Kasha, M. J. Chem. Phys. 1956,
24, 757; (c) Bearpark, M. J.; Bernardi, F.; Clifford, S.;
Olivucci, M.; Robb, M. A.; Smith, B. R.; Vreven, T. J.
Am. Chem. Soc. 1996, 118, 169.
4. Pagba, C.; Zordan, G.; Galoppini, E.; Piatnitski, E. L.;
Hore, S.; Deshayes, K.; Piotrowiak, P. J. Am. Chem. Soc.
2004, 126, 9888.
0
400
450
500
550
600
650
700
a
Wavelength [nm]
350
5. (a) Brown, H. C.; Bhat, N. G.; Srebnik, M. Tetrahedron
Lett. 1988, 29, 2631; (b) Soderquist, T. A.; Matos, K.
Tetrahedron Lett. 1995, 36, 2401; (c) Myiaura, N.; Suzuki,
A. Chem. Rev. 1995, 95, 2457.
6. Boomgaarden, W.; Vo¨gtle, F.; Nieger, M.; Hupfer, H.
Chem. Eur. J. 1999, 5, 345.
7. (a) Wang, D.; Schlegel, J. M.; Galoppini, E. Tetrahedron
2002, 58, 6027–6032; (b) Hoertz, P. G.; Carlisle, R.;
Meyer, G. J.; Wang, D.; Piotrowiak, P.; Galoppini, E.
Nanoletters 2003, 3, 325–330.
8. (a) Sonogashira, K. In Comprehensive Organic Synthesis;
Trost, B. M., Ed.; Pergamon: Oxford, UK, 1991; Vol. 3, p
551; (b) Metal-Catalyzed Cross-Coupling Reactions; 2nd
ed.; de Meijere, A., Diederich, F., Eds., Wiley-VCH:
Weinheim, Germany, 2004.
300
250
200
150
100
50
2-COOH (2.5 x 10-5M)
HOOC
COOH
HOOC
2-COOH (5 x 10-5M) + TiO2 (500 mg/L)
0
9. (a) Fabian, K. H. H.; Elwahy, A. H. M.; Hafner, K.
Tetrahedron Lett. 2000, 41, 2855; (b) Anderson, A. G.;
Nelson, J. A.; Tazuma, J. J. J. Am. Chem. Soc. 1953, 75,
4980; (c) Hafner, K.; Patzelt, H.; Kaiser, H. Justus Liebigs
Ann. Chem 1962, 656, 24.
400
450
500
550
600
650
700
b
Wavelength [nm]
Figure 3. Fluorescence emission spectra of (a) 1-COOH (black solid
line) and 1-COOH/colloidal TiO2 (red dotted line). (b) 2-COOH
(black solid line) and 2-COOH/colloidal TiO2 (red dotted line). In all
cases, the solvent was EtOH and kexc = 382 nm.
10. Guo, W.; Galoppini, E.; Rydja, G.; Pardi, G. Tetrahedron
Lett. 2000, 41, 7419.
11. Mathias, L. J.; Reichert, V. R.; Muir, A. V. G. Chem.
Mater. 1993, 5, 4.
12. The synthesis of 9 has been reported: Wei, Q.; Galoppini,
E. Tetrahedron 2004, 60, 8497. Compound 9 was contam-
inated by 1-phenyl-3,5,7-tris(4-carbomethoxyphenyl)ada-
mantane, which was easily separated from 2 after the
cross-coupling step. The yield of 9 is dependent on the
reactions conditions as the solvent and the apparatus must
be rigorously anhydrous.
In conclusion two novel azulene chromophores, rigid-
rod 1 and tripod 2, have been synthesized and bound
to colloidal solutions of TiO2 nanoparticles. Steady-
state and time-resolved fluorescence quenching studies
are in progress.
13. Compound 1: Mp 178–179 ꢁC; IR 3021, 2195, 1726, 1439,
1396, 1344, 1249, 1215 cmꢁ1; 1H NMR (CDCl3) d 8.69 (1H,
d, J = 10 Hz), 8.61 (1H, s), 8.44 (2H, s), 8.34 (1H, d,
J = 9 Hz ), 8.05 (1H, d, J = 4 Hz), 7.71 (2H, t, J = 10 Hz),
7.37 (1H, dd, J = 9, 6 Hz), 7.29 (1H, t, J = 10 Hz), 3.99 (6H,
s); 13C NMR (CDCl3) d 166.0, 141.9, 141.8, 139.8, 139.1,
137.7, 136.6, 136.2, 131.1, 129.4, 125.6, 125.3, 124.7, 118.2,
109.8, 92.4, 88.4, 52.7; FAB-MS m/z 344 (M+, 40); FAB-
HRMS calcd for C22H16O4 (M+) 344.1049, found 344.1048.
Compound 2: Mp 142–144 ꢁC; IR 3414, 2973, 2866, 1725,
1459, 1364, 1181, 1066 cmꢁ1; 1H NMR (CDCl3) d 8.64 (1H,
d, J = 10 Hz), 8.29 (1H, d, J = 10 Hz), 8.04 (6H, d,
J = 8 Hz), 8.02 (1H, d, J = 4 Hz), 7.65 (1H, t, J = 10 Hz),
7.61 (2H, d, J = 8 Hz), 7.57 (6H, d, J = 8 Hz), 7.48 (2H, d,
J = 8 Hz), 7.33 (1H, d, J = 4 Hz), 7.27 (1H, t, J = 10 Hz),
7.22 (1H, t, J = 10 Hz), 3.92 (9H, s), 2.21 (12H, 2s); 13C
NMR (CDCl3) d 166.9, 153.9, 148.1, 141.4, 141.2, 139.4,
138.7, 137.3, 136.4, 131.4, 129.8, 128.3, 125.1, 125.0, 124.6,
123.9, 122.3, 117.8, 110.6, 93.7, 85.9, 52.0, 46.7, 39.6, 39.4;
Acknowledgments
Support of this research by the National Science Foun-
dation NIRT Grant 0303829 is gratefully acknowl-
edged. We thank Mr. Dong Wang and Dr. Giovanni
Zordan for their early contribution to the project.
References and notes
1. For reviews, see: (a) Zeller, K.-P. In Methoden der
Organischen Chemie (Houben-Weyl); Kropf, H., Ed.;
Georg Thieme: Stuttgart, Germany, 1985; Vol. V/2c, p
127; (b) Lloyd, D. Nonbenzenoid Conjugated Carbocyclic
Compounds; Elsevier: Amsterdam, The Netherlands, 1984;
p 352; (c) Lloyd, D. The Chemistry of Conjugated Cyclic
Compounds; John Wiley and Sons: Chichester, UK, 1989;