K. J. Finn et al. / Tetrahedron: Asymmetry 15 (2004) 2833–2836
2835
5. (a) Boyd, D. R.; Sharma, N. D.; Boyle, R.; McMurray, B.
T.; Evans, T. A.; Malone, J. F.; Dalton, H.; Chima, J.;
Sheldrake, G. N. J. Chem. Soc., Chem. Commun. 1993, 4 9;
(b) Boyd, D. R.; Sharma, N. D.; Hempenstall, F.;
Kennedy, M. A.; Malone, J. F.; Allen, C. C. R. J. Org.
Chem. 1999, 64, 4005; (c) Boyd, D. R.; Sharma, N. D.;
Harrison, J. S.; Kennedy, M. A.; Allen, C. C. R.; Gibson,
D. T. J. Chem. Soc., Perkin Trans. 1 2001, 1264–1269; (d)
Ref. 4b.
6. For recent examples, see: (a) Back, T. G.; Parvez, M.;
Zhai, H. J. Org. Chem. 2003, 68, 9389–9393; (b) Chen, Y.;
Evarts, J. B., Jr.; Torres, E.; Fuchs, P. L. Org. Lett. 2002,
4(21), 3571–3574; (c) Craig, D. C.; Edwards, G. L.;
Muldoon, C. A. Synlett 1997, 1318–1320; For compre-
hensive reviews, see: (d) Fuchs, P. L.; Braish, T. F. Chem.
Rev. 1986, 86, 903; (e) Ba¨ckvall, J. E.; Chinchilla, R.;
To clarify the observed discrepancy in specific rotation,
we performed an additional proof of enantiomeric ex-
cess. Racemic cis-dihydroxy cyclohexane was converted
to a monothexyl derivative and further transformed to
MosherÕs ester 12, whose 19F NMR spectrum displayed
signals of equal intensity at ꢁ71.8 and ꢁ72.6ppm. Both
samples of 9 were converted to their Mosher esters and
their 19F NMR spectra displayed a single signal at
ꢁ72.8ppm. On the basis of this evidence we concluded
that 2 possesses the b-absolute configuration as indi-
cated in Scheme 1. As near as can be judged from the
absence of the diastereomeric signal in 12, the enantio-
meric excess of diol 2 is therefore greater than 95%.
We conclude that the whole-cell fermentation of p-
bromothioanisole with E. coli JM 109 (pDTG601) pro-
duced the single stereoisomer represented in Scheme 1
and that the thiomethyl group rather than the bromine
was the directing element in the biooxidation. This
observation further supports BoydÕs proposal that the
larger of the two groups on the aromatic nucleus directs
the regio- and stereochemistry of the oxidation. Further
investigation of applications of these new metabolites in
asymmetric synthesis is ongoing and will be reported in
due course.
´
Najera, C.; Yus, M. Chem. Rev. 1998, 98, 2291.
7. For an excellent review of radical cyclizations in the
synthesis of heterocycles, see: Bowman, W. R.; Fletcher,
A. J.; Potts, G. B. S. J. Chem. Soc., Perkin Trans. 1 2002,
2747–2762; For a review of free-radical annulation and
cascade reactions, see: McCarroll, A. J.; Walton, J. C. J.
Chem. Soc., Perkin Trans. 1 2001, 3215–3229.
8. Boyd, D. R.; Sheldrake, G. N. Nat. Prod. Rep., 1998,
309.
9. Boyd, D. R.; Hand, M. V.; Sharma, N. D.; Chima, J.;
Dalton, H.; Sheldrake, G. N. J. Chem. Soc., Chem.
Commun. 1991, 1630–1632.
10. Boyd, D. R.; Sharma, N. D.; Byrne, B.; Hand, M. V.;
Malone, J. F.; Sheldrake, G. N.; Blacker, J.; Dalton, H. J.
Chem. Soc., Perkin Trans. 1 1998, 1935–1943.
11. Allen, C. R. R.; Boyd, D. R.; Dalton, H.; Sharma, N. D.;
Haughey, S. A.; McMordie, R. A. S.; McMurray, B. T.;
Sheldrake, G. N.; Sproule, K. J. Chem. Soc., Chem.
Commun. 1995, 119–120.
12. Zylstra, G. J.; Gibson, D. T. J. Biol. Chem. 1989, 264,
14940.
13. Holland, H. L.; Brown, F. H.; Larsen, B. G. Biorg. Med.
Chem. Lett. 1994, 647.
14. The phenolic derivative arising from the decomposition of
thiomethyl-diene-diol 3 made by whole-cell fermentation
of thioanisole was isolated in low yield (0.15g/L) after
flash chromatography. Physical (TLC) and spectral (1H
NMR) data are consistent with that of the compound
arising from the decomposition of 3 synthesized by
electroreduction of 2.
15. For a detailed description of medium-scale whole-cell
fermentation (>10L) see: Endoma, M. E.; Bui, V. P.;
Hansen, J.; Hudlicky, T. Org. Proc. Res. Dev. 2002, 6,
525–532.
16. Diol 2 and other metabolites derived from p-substituted
thioanisoles have been prepared by enzymatic oxidations
with Pseudomonas putida UV4. See: Boyd, D. R.; Sharma,
N. D.; Byrne, B. E.; Haughey, S. A.; Kennedy, M. A.;
Allen, C. C. R. Org. Biomol. Chem., in press.
Acknowledgements
This work was funded by National Science and Engi-
neering Research Council (NSERC) of Canada, Petro-
leum Research Fund administered by the American
Chemical Society (PRF-38075-AC), Canadian Founda-
tion for Innovation (CFI), and the Canada Research
Chairs Program. We are grateful to Professor Rebecca
Parales (UC-Davis) and Dr. Gregg Whited (Genencor)
for their many helpful discussions and suggestions con-
cerning medium scale fermentation. We thank Brock
University for providing a graduate fellowship for K.F.
References
1. (a) Holland, H. L. Chem. Rev. 1988, 473–485; (b)
Colonna, S.; Gaggero, N.; Carrea, G.; Pasta, P. Chem.
Commun. 1998, 415; (c) Holland, H. L. Nat. Prod. Rep.
2001, 18, 171–181; (d) Colonna, S.; Gaggero, N.; Carrea,
G.; Pasta, P.; Alphand, V.; Furstoss, R. Chirality 2001, 13,
40–42; (e) Boyd, D. R.; Sharma, N. D.; Haughey, S. A.;
Kennedy, M. A.; Malone, J. F.; Shepherd, S. D.; Allen, C.
R.; Dalton, H. Tetrahedron 2004, 60, 549–559; (f) Boyd,
D. R.; Sharma, N. D.; Gunaratne, N.; Haughey, S. A.;
Kennedy, M. A.; Malone, J. F.; Shepherd, S. D.; Allen, C.
R.; Dalton, H. Org. Biomol. Chem. 2003, 1, 984–994.
2. (a) Boyd, D. R. J. Chem. Soc., Chem. Commun. 1995,
119–120; (b) Colonna, S.; Gaggero, N.; Carrea, G.; Pasta,
P. Chem. Commun. 1997, 439; (c) Holland, H. L. J. Ind.
Microbiol. Biotechnol. 2003, 30, 292–301.
17. The spectral and physical data for 2, 3, and 10 are as
follows: 1-Bromo-4-thiomethyl-(2R,3S)-dihydroxycyclo-
19
D
CHCl3); Rf = 0.26 (hexanes–ethyl acetate, 1:1); IR (film)
hexa-4,6-diene 2: mp 59–63°C; ½a ¼ ꢁ10:0 (c 1.08,
1
3197, 2921, 1626, 1548, 1416, 1340, 1306, 1036cmꢁ1; H
3. (a) Hudlicky, T.; Gonzalez, D.; Gibson, D. T. Aldrichim.
Acta 1999, 35; (b) Boyd, D. R. Nat. Prod. Rep. 1998, 15,
309.
4. (a) Boyd, D. R.; Sharma, N. D.; Haughey, S. A.; Malone,
J. F.; McMurray, B. T.; Sheldrake, G. N.; Allen, C. C. R.;
Dalton, H. J. Chem. Soc., Chem. Commun. 1996, 2363; (b)
Boyd, D. R.; Sharma, N. D.; Gunaratne, N.; Haughey, S.
A.; Kennedy, M. A.; Malone, J. F.; Allen, C. C. R.;
Dalton, H. Org. Biomol. Chem. 2003, 1, 984–994.
NMR (400MHz, CDCl3) d: 6.37 (d, J = 6.1Hz, 1H), 5.35
(d, J = 6.3Hz, 1H), 4.43 (dd, J = 9.0, 3.2Hz, 1H), 4.32 (dd,
J = 7.5, 1.4Hz, 1H), 2.63 (d, J = 9Hz, 1H), 2.26 (s, 3H),
2.24(d, J = 7.6, 1H). 13C NMR (100MHz, CDCl3) d:
142.8, 127.8, 120.3, 112.7, 73.6, 72.5, 14.4; EI-MS m/z (%):
238 (8), 236 (8), 220 (100), 218 (98), 205 (41), 203 (39), 177
(24), 175 (24), 157 (20), 142 (25), 109 (33), 96 (24), 45 (41).
EI-HRMS calcd for C7H9O2SBr (M+): 235.9501; found:
235.9506; Anal. Calcd for C7H9BrO2S: C, 35.46; H, 3.83.