Notes and references
‡ Crystal
data
for
[K(C3H7NO)3]4[C156H96N16O24Ti4]·K4(C3-
H7NO)10(C3H7NO)2/2, M = 4764.10, monoclinic, space group C2/c (No.
15), a = 35.628(1), b = 32.922(1), c = 26.300(1) Å, b = 123.79(1)°, V =
25637.6(14) Å3, Dc = 1.234 g cm23, m = 3.26 cm21, Z = 4, l = 0.7103
Å, T = 198 K, 44276 reflections collected (±h, ±k, ±l), [(sinq)/l] = 0.54
Å21, 16324 independent (Rint = 0.084) and 9559 observed reflections [I 4
2 s(I)], 1291 refined parameters, R = 0.129, wR2 = 0.324. CCDC 210953.
in .cif or other electronic format.
1 D. J. Cram and J. M. Cram, Container molecules and their guests, RSC,
Cambridge, 1994.
2 A. Jasat and J. C. Sherman, Chem. Rev., 1999, 99, 931; R. C. Helgeson,
K. Paek, C. B. Knobler, E. F. Maverick and D. J. Cram, J. Am. Chem.
Soc., 1996, 118, 5590; J. C. Sherman and D. J. Cram, J. Am. Chem. Soc.,
1989, 111, 4527.
3 B. R. Beno, C. Sheu, K. N. Houk, R. Warmuth and D. J. Cram, Chem.
Commun., 1998, 301.
4 R. Warmuth, Eur. J. Org. Chem., 2001, 423; R. Warmuth, Chem.
Commun., 1998, 59.
5 E. g.: E. Graf and J.-M. Lehn, J. Am. Chem. Soc., 1975, 97, 5022; F. P.
Schmidtchen and G. Müller, J. Chem. Soc. Chem. Commun., 1984,
1115.
6 L. R. MacGillivray and J. L. Atwood, Nature, 1997, 389, 469; R. M.
Grotzfeld, N. Branda and J. Rebek, Science, 1996, 271, 487.
7 For an example see: P. Klüfers and J. Schuhmacher, Angew. Chem.,
1994, 106, 1925; Angew. Chem. Int. Ed., 1994, 33, p. 1863.
8 D. Caulder and K. N. Raymond, J. Chem. Soc., Dalton Trans., 1999,
1185.
9 L. R. MacGillivray and J. L. Atwood, Angew. Chem., 1999, 111, 1243;
Angew. Chem. Int. Ed., 1999, 38, p. 1018.
10 R. W. Saalfrank, A. Stark, K. Peters and H. G. Von Schnering, Angew.
Chem., 1988, 100, 878; Angew. Chem. Int. Ed., 1988, 27, p. 851; R. W.
Saalfrank and I. Bernt, Curr. Opin. Solid State & Materials Science,
1998, 3, 407.
11 D. W. Johnson and K. N. Raymond, Inorg. Chem., 2001, 40, 5157.
12 T. N. Parac, D. Caulder and K. N. Raymond, J. Am. Chem. Soc., 1998,
120, 8003.
13 M. Ziegler, J. L. Brumaghim and K. N. Raymond, Angew. Chem., 2000,
112, 4285; Angew. Chem. Int. Ed., 2000, 39, p. 4119.
14 D. W. Johnson, J. Xu, R. W. Saalfrank and K. N. Raymond, Angew.
Chem., 1999, 111, 3058; , Angew. Chem. Int. Ed., 1999, 38, p. 2882; S.
Hiraoka, T. Yi, M. Shiro and M. Shionoya, J. Am. Chem. Soc., 2002,
124, 14510; M. Albrecht, Angew. Chem., 1999, 111, 3671; Angew.
Chem. Int. Ed., 1999, 38, p. 3463.
Fig. 2 Representations of the solid state structure of (a) the octaanion
[Ti4L4]82, (b) the coordination at an encapsulated {K(DMF)3}-unit, and (c)
the four central nitrogen atoms of ligands L and the four titanium(IV) ions.
Those eight atoms define the cavity size of the supramolecular tetrahedron
(yellow: titanium, blue: potassium, grey: carbon, green: nitrogen, red:
oxygen; hydrogen atoms are omitted for clarity).
15 A. J. Amoroso, J. C. Jefferey, P. L. Jones, J. A. McCleverty, P. Thornton
and M. D. Ward, Angew. Chem., 1995, 107, 1577; Angew. Chem. Int.
Ed., 1995, 34, p. 1443.
Fig. 2c represents the titanium atoms and the central nitrogen
atoms of the ligand, which all together define the size of the
cavity. Hereby the titanium(IV) ions (Ti…Ti = 16.7–17.1 Å) as
well as nitrogen atoms (N…N = 9.7–10.0 Å) form two
tetrahedra with the smaller one fitted into the bigger one.
Titanium–nitrogen distances within the ligands are 10.0 to 10.2
Å, while the Ti–N distances through the cavity are in the region
of 16.3 Å.
The concept to use ligands with C3-symmetry to obtain
tetranuclear [M4(ligand)4] complexes was already introduced
by others.15,17 However, we describe the first example of a
tetrahedral tetranuclear coordination compound which binds
guest species in its interior. The cavity of the complex possesses
an extraordinary size and is able to encapsulate four
{K(DMF)3}-units and three additional DMF molecules. There-
fore this huge coordination compound should be well suited for
the investigation of guest encapsulation and guest exchange in
solution. The big pores of the tetrahedron hereby should not be
a problem as was shown by the work of Fujita.20 Corresponding
studies are momentarily going on in our laboratories.
16 D. Caulder, C. Brückner, R. E. Powers, S. König, T. N. Parac, J. A.
Leary and K. N. Raymond, J. Am. Chem. Soc., 2001, 123, 8923.
17 C. Brückner, R. E. Powers and K. N. Raymond, Angew. Chem., 1998,
110, 1937; Angew. Chem. Int. Ed., 1998, 37, p. 1837.
18 R. W. Saalfrank, H. Glaser, B. Demleitner, F. Hampel, M. M.
Chowdhury, V. Schünemann, A. X. Trautwein, G. B. M. Vaughan , R.
Yeh, A. V. Davis and K. N. Raymond, Chem. Eur. J., 2002, 8, 493.
19 J. E. Field, M. Y. Combariza, R. W. Vachet and D. Venkataraman,
Chem. Commun., 2002, 2260.
20 Review: M. Fujita, Chem. Soc. Rev., 1998, 27, 417.
21 B. Olenyuk, A. Fechtenkötter and P. J. Stang, J. Chem. Soc., Dalton
Trans., 1998, 1707.
22 Review: S. Leininger, B. Olenyuk and P. J. Stang, Chem. Rev., 2000,
100, 853.
23 M. Fujita, K. Umemoto, M. Yoshizawa, N. Fujita, T. Kusukawa and K.
Biradha, Chem. Commun., 2001, 509.
24 M. Yoshizawa, T. Kusukawa, M. Fujita and K. Yamaguchi, J. Am.
Chem. Soc., 2000, 122, 6311.
25 H. Ito, T. Kusukawa and M. Fujita, Chem. Lett., 2000, 598; M.
Yoshizawa, Y. Takeyama, T. Okano and M. Fujita, J. Am. Chem. Soc.,
2003, 125, 3243.
26 O. Temme, T. Dickner, S. Laschat, R. Fröhlich, S. Kotila and K.
Bergander, Eur. J. Org. Chem., 1998, 651.
This work was supported by the Fonds der Chemischen
Industrie and the Deutsche Forschungsgemeinschaft (SPP
1118). We thank Professor Dr M. Kappes and the Nano-
technology Institute, Forschungszentrum Karlsruhe for facili-
tating the ESI-MS measurements.
27 M. Albrecht, S. Kamptmann and R. Fröhlich, Polyhedron, 2003, 22,
643.
28 M. Albrecht, H. Röttele and P. Burger, Chem. Eur. J., 1996, 2, 1264.
CHEM. COMMUN., 2003, 2854–2855
2855