Communication
ChemComm
10 As determined from a survey of the Cambridge Crystallographic
Database, March, 2016.
11 Y. Sun, W. E. Piers and M. Parvez, Can. J. Chem., 1998, 76, 513.
12 A. Guerrero, E. Martin, D. L. Hughes, N. Kaltsoyannis and
M. Bochmann, Organometallics, 2006, 25, 3311.
13 M.-E. Moret and P. Chen, J. Am. Chem. Soc., 2009, 131, 5675.
14 B. M. Still, P. G. A. Kumar, J. R. Aldrich-Wright and W. S. Price,
Chem. Soc. Rev., 2007, 36, 665.
15 Plane defined to include the phosphorus and platinum atoms. If the
plane is defined to also include the ipso aryl carbons, the zinc is
1.236 Å above the plane.
This work was supported by the Director, Office of Science,
Office of Basic Energy Sciences of the US Department of Energy
under contract no. DE-AC02-05CH11231. We also acknowledge
the US National Institutes of Health for funding of the CheXray
X-ray crystallographic facility (College of Chemistry, University
of California, Berkeley) under grant number S10-RR027172 and
the UC Berkeley College of Chemistry NMR facility under grant
SRR023679A. D. S. L. and M. S. Z. would like to acknowledge
support of NSF Graduate Research Fellowships.
16 (a) K. M. MacKay, R. A. MacKay and W. Henderson, Introduction to
Modern Inorganic Chemistry, Melson Thornes Ltd., London, 6th edn,
2002, p. 174; (b) H. C. Clark and C. R. Milne, Can. J. Chem., 1979,
57, 958.
Notes and references
17 R. Z. Khaliullin, A. T. Bell and M. Head-Gordon, J. Chem. Phys., 2008,
128, 184112.
1 (a) M. L. H. Green, J. Organomet. Chem., 1995, 500, 127; (b) A. F. Hill,
Organometallics, 2006, 25, 4741; (c) G. Parkin, Organometallics, 2006,
25, 4744.
18 Reactions were performed with a 10-fold excess of ZnArF2 to ensure
that zinc binding was maintained at 60 1C. Several coordinating
groups were employed in attempts to trap the platinum(0) product.
With 1,5-cyclooctadiene or bis(trimethylsilyl)acetylene as trapping
agents, decomposition of ZnArF2 and (phen)PtAr2 occurred, without
clean biaryl formation. In the presence of tri-tert-butylphosphine,
the bis(phosphine) adduct Pt(PtBu3)2 was cleanly formed; however,
there was a substantial decrease in the rate of reductive elimination,
increasing the reaction time from 15 minutes to 24 hours at 60 1C.
This rate decrease is likely due to phosphine–zinc adduct formation,
2 A. Amgoune and D. Bourissou, Chem. Commun., 2011, 47, 859.
3 (a) A. F. Hill, G. R. Owen, A. J. P. White and D. J. Williams, Angew.
Chem., Int. Ed., 1999, 38, 2759; (b) V. K. Landry, J. G. Melnick,
D. Buccella, K. Pang, J. C. Ulichny and G. Parkin, Inorg. Chem., 2006,
45, 2588; (c) S. Bontemps, G. Bouhadir, K. Miqueu and D. Bourissou,
J. Am. Chem. Soc., 2006, 128, 12056; (d) M. Sircoglou, S. Bontemps,
G. Bouhadir, N. Saffon, K. Miqueu, W. Gu, M. Mercy, C.-H. Chen,
B. M. Foxman, L. Maron, O. V. Ozerov and D. Bourissou, J. Am.
Chem. Soc., 2008, 130, 16729.
tBu3P–ZnArF2, which decreases the concentration of free ZnArF
4 (a) J. Bauer, H. Braunschweig and R. D. Dewhurst, Chem. Rev., 2012,
2
available to interact with platinum.
¨
112, 4329; (b) M. Kim, T. J. Taylor and F. P. Gabbaı, J. Am. Chem. Soc.,
19 A. C. Skapski, V. F. Sutcliffe and G. B. Young, J. Chem. Soc., Chem.
Commun., 1985, 609.
20 B. Butschke and H. Schwarz, Chem. Sci., 2012, 3, 308.
´
2008, 130, 6332; (c) J. M. Lopez-de-Luzuriaga, M. Monge, M. E.
Olmos, D. Pascual and T. Lasanta, Chem. Commun., 2011, 47, 6795;
(d) T. Lasanta, J. M. Lopez-de-Luzuriaga, M. Monge, M. E. Olmos
´
21 J. B. Johnson and T. Rovis, Angew. Chem., Int. Ed., 2008, 47, 840.
22 (a) T. Yamamoto, A. Yamamoto and S. Ikeda, J. Am. Chem. Soc., 1971,
93, 3350; (b) S. Komiya, Y. Akai, K. Tanaka, T. Yamamoto and
A. Yamamoto, Organometallics, 1985, 4, 1130; (c) A. Gollaszewski
and J. Schwartz, Organometallics, 1985, 4, 417; (d) R. Sustmann and
J. Lau, Chem. Ber., 1986, 119, 2531; (e) R. Sustmann, J. Lau and
M. Zipp, Tetrahedron Lett., 1986, 27, 5207; ( f ) H. Kurosawa,
H. Kijimaru, M.-A. Miyoshi, H. Ohnishi and I. Ikeda, J. Mol. Catal.,
1992, 74, 481; (g) B. A. Markies, A. J. Canty, J. Boersma and G. van
Koten, Organometallics, 1994, 13, 2053; (h) T. Yamamoto, M. Alba
and Y. Murakami, Bull. Chem. Soc. Jpn., 2002, 75, 1997;
(i) T. Yamamoto, I. Yamaguchi and M. Alba, J. Organomet. Chem.,
2003, 671, 179; ( j) A. Yahav, I. Goldberg and A. Vigalok, J. Am. Chem.
Soc., 2003, 125, 13634; (k) B. V. Popp and S. S. Stahl, J. Am. Chem.
Soc., 2006, 128, 2804; (l) M. P. Lanci, M. S. Remy, W. Kaminsky,
J. M. Mayer and M. S. Sanford, J. Am. Chem. Soc., 2009, 131, 15618.
and D. Pascual, Chem. – Eur. J., 2013, 19, 4754.
5 M. Ma, A. Sidiropoulos, L. Ralte, A. Stasch and C. Jones, Chem. Commun.,
2013, 49, 48.
´
´
6 (a) B. Fuentes, M. Garcıa-Melchor, A. Lledos, F. Maseras, J. A.
Casares, G. Ujaque and P. Espinet, Chem. – Eur. J., 2010, 16, 8596;
´
(b) R. Alvarez, A. R. de Lera, J. M. Aurrecoechea and D. Aritz,
Organometallics, 2007, 26, 2799.
7 (a) R. van Asselt and C. J. Elsevier, Organometallics, 1994, 13, 1972;
(b) J. A. Casares, P. Espinet, B. Fuentes and G. Salas, J. Am. Chem. Soc.,
2007, 129, 3508; (c) Q. Liu, Y. Lan, J. Liu, G. Li, Y.-D. Wu and A. Lei,
J. Am. Chem. Soc., 2009, 131, 10201; (d) J. delPozo, E. Gioria, J. A.
´
Casares, R. Alvarez and P. Espinet, Organometallics, 2015, 34, 3120.
8 A. L. Liberman-Martin, D. S. Levine, W. Liu, R. G. Bergman and
T. D. Tilley, Organometallics, 2016, 35, 1064.
9 D. A. Walker, T. J. Woodman, D. L. Hughes and M. Bochmann,
Organometallics, 2001, 20, 3772.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2016