H.-S. Jeon, S. Koo / Tetrahedron Letters 45 (2004) 7023–7026
7025
3. (a) Pattenden, G.; Sinclair, D. J. J. Organomet. Chem.
´
2002, 653, 261–268; (b) Remuin˜an, M. J.; Pattenden, G.
Tetrahedron Lett. 2000, 41, 7367–7371; (c) Caline, C.;
Pattenden, G. Synlett 2000, 1661–1663; (d) Romo, D.;
Rzasa, R. M.; Shea, H. A.; Park, K.; Langenhan, J. M.;
Sun, L.; Akhiezer, A.; Liu, J. O. J. Am. Chem. Soc. 1998,
120, 12237–12254; (e) Rzasa, R. M.; Shea, H. A.; Romo,
D. J. Am. Chem. Soc. 1998, 120, 591–592.
4. (a) Kundim, B. A.; Itou, Y.; Sakagami, Y.; Fudou, R.;
Iizuka, T.; Yamanaka, S.; Ojika, M. J. Antibiot. 2003, 56,
630–638; (b) Fudou, R.; Iizuka, T.; Sato, S.; Ando, T.;
Shimba, N.; Yamanaka, S. J. Antibiot. 2001, 54, 153–156;
(c) Fudou, R.; Iizuka, T.; Yamanaka, S. J. Antibiot. 2001,
54, 149–152.
5. (a) Hu, T.; Schaus, J. V.; Lam, K.; Palfreyman, M. G.;
Wuonola, M.; Gustafson, G.; Panek, J. S. J. Org. Chem.
1998, 63, 2401–2406; (b) Jansen, R.; Irschik, H.; Reichen-
bach, H.; Hoefle, G. Liebigs Ann. Chem. 1985, 822–836;
(c) Irschik, H.; Gerth, K.; Hoefle, G.; Kohl, W.; Reichen-
bach, H. J. Antibiot. 1983, 36, 1651–1658; (d) Kohl, W.;
Irschik, H.; Reichenbach, H.; Hoefle, G. Liebigs Ann.
Chem. 1983, 1656–1667; (e) Irschik, H.; Gerth, K.; Hofle,
G.; Kohl, W.; Reichenbach, H. J. Antibiot. 1983, 36,
1651–1658.
Figure 4. A general synthetic method of the conjugated polyene chains
with the 1,4-dimethyl substitution.
Table 2. Structures of the substrates and the yields of the reactions in
Figure 4
Entry
1
Suffix
Structure of R
6 (%)
2 (%)
a
83
92
2
3
b
c
CH3
82
81
52
62
6. (a) Boulin, B.; Arreguy-San Miguel, B.; Delmond, B.
Synth. Commun. 2003, 33, 1047–1055; (b) Climent, M. J.;
Corma, A.; Iborra, S.; Velty, A. Green Chem. 2002, 4,
474–480; (c) Roelofs, J. C. A. A.; Van Dillen, A. J.; De
Jong, K. P. Catal. Lett. 2001, 74, 91–94; (d) Kelleher, R.
G.; McKervey, M. A.; Vibuljan, P. J. Chem. Soc., Chem.
Commun. 1980, 486–488.
7. (a) Choi, H.; Ji, M.; Park, M.; Yun, I.-K.; Oh, S.-S.; Baik,
W.; Koo, S. J. Org. Chem. 1999, 64, 8051–8053; (b) Ji, M.;
Choi, H.; Park, M.; Kee, M.; Jeong, Y. C.; Koo, S. Angew.
Chem., Int. Ed. 2001, 40, 3627–3629; (c) Ji, M.; Choi, H.;
Jeong, Y. C.; Jin, J.; Baik, W.; Lee, S.; Kim, J. S.; Park,
M.; Koo, S. Helv. Chim. Acta 2003, 86, 2620–2628.
8. (a) Julia, M.; Arnould, D. Bull. Soc. Chim. Fr., 1973,
746–750; (b) Manchand, P. S.; Rosenberger, M.; Saucy,
G.; Wehrli, P. A.; Wong, H.; Chambers, L.; Ferro, M. P.;
Jackson, W. Helv. Chim. Acta 1976, 59, 387–396; (c)
Chabardes, P.; Decor, J. P.; Varagnat, J. Tetrahedron
1977, 33, 2799–2805.
4
d
68
52
the conjugated polyene chains 2b–d with the 1,4-di-
methyl substitution pattern. Once again, the instability
of the acyclic conjugated triene unit in 2b–d might ex-
plain a little lower yields of 52–62%.
In conclusion, we have developed an efficient synthetic
method of the conjugated polyene chains with the 1,4-
dimethyl substitution, in which (i) the chemoselective
conjugate addition of allylic sulfones to the allylic ha-
lides with conjugated diesters followed by cyclopropana-
tion and (ii) DBU-promoted dehydrosulfonation of the
resulting b-cyclopropylidenesulfone have been demon-
strated for the first time. We have proven the generality
of this method, which can be usefully applied to the syn-
theses of various isoprenoid natural products containing
the polyene chains with the 1,4-dimethyl substitution.
9. (a) Togo, H.; Hirai, T. Synlett, 2003, 702–704; (b)
Haefliger, W.; Petrzilka, T. Helv. Chim. Acta 1966, 49,
1937–1950.
10. Lehnert, W. Tetrahedron 1973, 29, 635–638.
11. The representative experimental procedure for 6a: To a
stirred solution of the C15 allylic sulfone 3a (1.00g,
2.90mmol) in THF (30mL) at ꢀ78ꢁC under Ar atmos-
phere was added a 1.6M solution of n-BuLi (2.0mL,
3.20mmol). The mixture was stirred for 30min at that
temperature, and a solution of 4b (0.89g, 3.77mmol) in
THF (5mL) was added. The resulting mixture was stirred
at ꢀ78ꢁC for 30min and then at room temperature for
1.5h. The reaction mixture was quenched with 1M HCl
solution (50mL), extracted with ether (20mL · 3), dried
over anhydrous Na2SO4, filtered, and concentrated under
reduced pressure. The crude product was purified by silica
gel flash chromatography to give 6a (1.30g, 2.39mmol) in
83% yield. Data for 6a: 1H NMR (300MHz, CDCl3) d
0.97 (3H, s), 0.98 (3H, s), 1.11 (3H, s), 1.26 (1H, A of ABq,
J = 5.1Hz), 1.34 (1H, B of ABq, J = 5.1Hz), 1.37 (3H, t,
J = 7.2Hz), 1.38 (3H, t, J = 7.2Hz), 1.42–1.51 (2H, m),
1.49 (3H, s), 1.57–1.66 (2H, m), 1.68 (3H, s), 2.00 (2H, br t,
J = 6.0Hz), 4.23–4.43 (4H, m), 4.97 (1H, d, J = 11.1Hz),
Acknowledgements
This work was supported by the RRC (Regional Re-
search Center) program of MOST (Ministry of Science
and Technology), KOSEF (Korea Science and Engi-
neering Foundation), and Kyunggi-Do.
References and notes
1. (a) Pommer, H. Angew. Chem. 1960, 72, 911–915; (b)
Pommer, H.; Nurrenbach, A. Pure Appl. Chem. 1975, 43,
¨
527–551; (c) Isler, O. Pure Appl. Chem. 1979, 51, 447–462;
(d) Widmer, E. Pure Appl. Chem. 1985, 57, 741–752; (e)
Bernhard, K.; Mayer, H. Pure Appl. Chem. 1991, 63,
35–44; (f) Paust, J. Pure Appl. Chem. 1991, 63, 45–58.
2. (a) Koskinen, A. Asymmetric Synthesis of Natural Prod-
ucts; Wiley: Chichester, 1993; pp 168–191; (b) Cane, D. E.
In Comprehensive Natural Products Chemistry; Barton, D.,
Nakanishi, K., Eds.; Elsevier: Oxford, 1999; Vol. 2, pp
1–13.
5.71 (1H, d, J = 11.1Hz), 5.97 (1H,
J = 16.2Hz), 6.04 (1H, B of ABq, J = 16.2Hz), 7.42–7.56
A of ABq,
(3H, m), 7.72–7.74 (2H, m) ppm; 13C NMR (75.5MHz,