15 P. R. Selvakannan, S. Mandal, R. Pasricha, S. D. Adyanthaya and
M. Sastry, Chem. Commun., 2002, 1334.
16 R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz and
J. G. Zheng, Science, 2001, 294, 1901.
17 T. Huang and R. W. Murray, J. Phys. Chem. B, 2001, 105, 12 498.
18 T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein and
M. A. El-Sayed, Science, 1996, 272, 1924.
19 B. R. Martin, D. J. Dermody, B. D. Reiss, M. M. Fang, L. A. Lyon,
M. J. Natan and T. E. Mallouk, Adv. Mater., 1999, 11, 1021.
20 B. M. I. van der Zande, M. R. Bohmer, L. G. Fokkink and
C. Schonenberger, Langmuir, 2000, 16, 451.
21 V. M. Cepak and C. R. Martin, J. Phys. Chem. B, 1998, 102, 9985.
22 A. Govindaraj, B. C. Satishkumar, M. Nath and C. N. R. Rao,
Chem. Mater., 2000, 12, 202.
23 S. Fullam, D. Cottell, H. Rensmo and D. Fitzmaurice, Adv.
Mater., 2000, 12, 1430.
air–water interfaces. At this stage, the extent of polymerization
is not comprehensible from 1H NMR studies. This would
require separation of the polymer from the nanoparticles for
detailed analysis and is currently under study.
In summary, it has been shown that the ability of the amino
acid tyrosine to reduce gold ions can be enhanced by alkyla-
tion. Alkylation of tyrosine enables the use of this multi-
functional molecule in the spontaneous reduction of aqueous
gold ions at both the liquid–liquid and air–water interfaces
with dramatic differences in the morphology of the gold
nanoparticles formed. The rational strategy developed for truly
two-dimensional reduction of metal ions at an interface is
currently being extended to control the crystallography of the
reducing surface and thereby controlling the crystallography of
the nucleating nanoparticle face.
24 K. Esumi, K. Matsuhisa and K. Torigoe, Langmuir, 1995, 11,
3285.
25 Y. Y. Yu, S. S. Chang, C. L. Lee and C. R. C. Wang, J. Phys.
Chem., 1997, 101, 6661.
26 N. R. Jana, L. Gearheart and C. J. Murphy, J. Phys. Chem. B,
2001, 105, 4065.
27 S.-W. Chung, G. Markovich and J. R. Heath, J. Phys. Chem. B,
1998, 102, 6685.
28 N. R. Jana, L. Gearhart and C. J. Murphy, Chem. Commun., 2001,
617.
Acknowledgements
A. S. and A. K. would like to thank the Council for Scientific
and Industrial Research (CSIR), Govt. of India, for research
fellowships. This work was partially funded by a grant from the
Department of Science and Technology (DST), Govt. of India
and is gratefully acknowledged.
29 K. R. Brown, D. G. Walter and M. J. Natan, Chem. Mater., 2000,
12, 306.
30 C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy and
S. Mann, J. Mater. Chem., 2002, 12, 1765.
31 X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher,
A. Kadanavich and A. P. Alivisatos, Nature, 2000, 404, 59.
32 S. I. Nikitenko, Y. Koltypin, Y. Mastai, M. Koltypin and
A. Gedanken, J. Mater. Chem., 2002, 12, 1450.
References
1
2
C. K. Preston and M. J. Moskovits, J. Phys. Chem., 1993, 97, 8405.
A. J. Hoffman, G. Mills, H. Yee and M. R. Hoffman, J. Phys.
Chem., 1992, 96, 5546.
3
4
5
6
W. Baschong and N. G. Wrigley, J. Electron Microsc. Tech., 1990,
14, 313.
R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger and
C. A. Mirkin, Science, 1997, 277, 1078.
J. Turkevich, G. Garton and P. C. Stevenson, J. Colloid Sci., 1954,
9, 26.
D. A. Handley, Colloidal Gold: Principles, Methods and Applica-
tions, M. A. Hayat, ed., Academic Press, San Diego, 1989, vol. 1,
ch. 2.
D. G. Duff, A. Baiker and P. P. Edwards, Langmuir, 1993, 9, 2301.
A. Henglein, Langmuir, 1999, 15, 6738.
E. Gachard, H. Remita, J. Khatouri, B. Keita, L. Nadjo and
J. Belloni, New J. Chem., 1998, 1257.
33 N. Malikova, I. Pastoriza-Santos, M. Schierhorn, N. A. Kotov
and L. M. Liz-Marzan, Langmuir, 2002, 18, 3694.
34 N. Pinna, K. Weiss, J. Urban and M.-P. Pileni, Adv. Mater., 2001,
13, 261.
35 (a) Y. Sun, B. Mayers, T. Herricks and Y. Xia, Nano Lett., 2003, 3,
955; (b) Y. Sun and Y. Xia, Adv. Mater., 2002, 14, 833; (c) Y. Sun
and Y. Xia, Science, 2002, 298, 2176; (d) Y. Sun and Y. Xia, Adv.
Mater., 2003, 15, 695; (e) Y. Sun, B. T. Mayers and Y. Xia, Nano
Lett., 2002, 2, 481; (f) Y. Sun, B. Mayers and Y. Xia, Adv. Mater.,
2003, 15, 641; (g) Y. Sun and Y. Xia, J. Am. Chem. Soc., 2004, 126,
3892.
7
8
9
36 A. Swami, A. Kumar, P. R. Selvakannan, S. Mandal, R. Pasricha
and M. Sastry, Chem. Mater., 2003, 15, 17.
10 Y. Mizukoshi, T. Fujimoto, Y. Nagata, R. Oshima and Y. Maeda,
J. Phys. Chem. B, 2000, 104, 6028.
37 S. Mandal, P. R. Selvaakannan, S. Phadtare, R. Pasricha and
M. Sastry, Proc. Indian Acad. Sci. (Chem. Sci.), 2002, 114, 513.
38 P. R. Selvakannan, S. Mandal, S. Phadtare, A. Gole, R. Pasricha,
S. D. Adyanthaya and M. Sastry, J. Colloid Interface Sci., 2004,
269, 97.
39 Y. Zhou, W. Chen, H. Itoh, K. Naka, Q. Ni, H. Yamane and
Y. Chujo, Chem. Commun., 2001, 2518.
40 D. A. Shirley, Phys. Rev. B, 1972, 5, 4709.
11 P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S. R. Sainkar,
M. I. Khan, R. Ramani, R. Parischa, P. V. Ajayakumar, M. Alam,
M. Sastry and R. Kumar, Angew. Chem., Int. Ed., 2001, 40, 3585.
12 P. Mukherjee, S. Senapati, D. Mandal, A. Ahmad, M. I. Khan,
R. Kumar and M. Sastry, ChemBioChem, 2002, 3, 461.
13 M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and R. Whyman,
J. Chem. Soc., Chem. Commun., 1994, 801.
41 D. V. Leff, L. Brandt and J. R. Heath, Langmuir, 1996, 12, 4723.
42 X.-G. Li, M-R. Huang, W. Duan and Y.-L. Yang, Chem. Rev.,
2002, 102, 2925.
14 R. G. Nuzzo and D. L. Allara, J. Am. Chem. Soc., 1993, 105,
4481.
2 7 0 2
J . M a t e r . C h e m . , 2 0 0 4 , 1 4 , 2 6 9 6 – 2 7 0 2