C O M M U N I C A T I O N S
Scheme 2
Scheme 4
in regeneration of the active catalyst and formation of two isomeric
diene products I and J. To further probe the effect of 1-siloxy
substitution, we subjected enyne 21 (Scheme 4) to the standard
cyclization protocol. The reaction produced cyclopropane 22 as a
single product, highlighting the crucial role of the siloxy alkyne
moiety in the outcome of the enyne cycloisomerization, presumably
due to the stabilization of cationic intermediate E.
In summary, we have developed a highly efficient Au-catalyzed
cycloisomerization of siloxy enynes that features low catalyst
loading and exceedingly mild reaction conditions. This new catalytic
process provides rapid access to highly substituted siloxy cyclo-
hexadienes and the corresponding 1,2- and 1,3-cyclohexenones.
Importantly, the siloxy alkyne moiety is uniquely responsible for a
novel reaction mechanism of the cycloisomerization, which is
proposed to involve a cascade of 1,2-alkyl shifts.
participated in the cycloisomerization process, terminal monosub-
stituted alkenes proved to be unreactive during the current catalytic
protocol.
Siloxy cyclohexadiene products of the cycloisomerizations can
be efficiently converted to 1,2- and 1,3-cyclohexenones, highlighting
the general synthetic utility of this process. Protodesilylation of
silyl enol ether 6 afforded nonconjugated enone 19 (Scheme 2).
Subjection of siloxy diene 14 to the same protocol afforded
conjugated enone 20.
Scheme 3
Acknowledgment. We thank Randy Sweis for preparation and
cycloisomerization of enyne 21. S.A.K thanks the Dreyfus Founda-
tion for a Teacher-Scholar Award and Amgen, Inc., for a New
Investigator’s Award. S.A.K. is a fellow of the Alfred P. Sloan
Foundation.
Supporting Information Available: Full characterization of new
compounds and selected experimental procedures (PDF). This material
References
(1) For selected reviews, see: (a) Aubert, C.; Buisine, O.; Malacria, M. Chem.
ReV. 2002, 102, 813. (b) Nevado, C.; Ca´rdenas, D. J.; Echavarren, A. M.
Chem. Eur. J. 2003, 9, 2627. (c) Me´ndez, M.; Mamane, V.; Fu¨rstner, A.
Chemtracs: Org. Chem. 2003, 16, 397.
(2) (a) Blum, J.; Beer-Kraft, H.; Badrieh, Y. J. Org. Chem. 1995, 60, 5567.
(b) Chatani, N.; Furukawa, N.; Sakurai, H.; Murai, S. Organometallics
1996, 15, 901. (c) Chatani, N.; Kataoka, K.; Murai, S.; Furukawa, N.;
Seki, Y. J. Am. Chem. Soc. 1998, 120, 9104. (d) Fu¨rstner, A.; Szillat, H.;
Gabor, B.; Mynott, R. J. Am. Chem. Soc. 1998, 120, 8305. (e) Fu¨rtsner,
A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785. (f) Trost,
B. M.; Doherty, G. A. J. Am. Chem. Soc. 2000, 122, 3801. (g) Fu¨rstner,
A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2001, 123, 11863. (h) Me´ndez,
M.; Mun˜oz, M. P.; Nevado, C.; Ca´rdenas, D. J.; Echavarren, A. M. J.
Am. Chem. Soc. 2001, 123, 10511. (i) Mainetti, E.; Mouries, V.;
Fensterbank, L.; Malacria, M.; Marco-Contelles, J. Angew. Chem., Int.
Ed. 2002, 41, 2132. (j) Martin-Matute, B.; Nevado, C.; Ca´rdenas, D. J.;
Echavarren, A. M. J. Am. Chem. Soc. 2003, 125, 5757. (k) Cadran, N.;
Cariou, K.; Herve, G.; Aubert, C.; Fensterbank, L.; Malacria, M.; Marco-
Contelles, J. J. Am. Chem. Soc. 2004, 126, 3408. (l) Harrak, Y.;
Blaszykowski, C.; Bernard, M.; Cariou, K.; Mainetti, E.; Mouries, V.;
Dhimane, A. L.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc. 2004,
126, 8656. Also see ref 3b.
(3) (a) Nieto-Oberhuber, C.; Mun˜oz, M. P.; Bun˜uel, E.; Nevado, C.; Ca´rdenas,
D. J.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 2402. (b)
Mamane, V.; Gress, T.; Krause, H.; Fu¨rstner, A. J. Am. Chem. Soc. 2004,
126, 8654.
(4) For our previous studies on reactivity and applications of siloxy alkynes,
see: (a) Schramm, M. P.; Reddy, D. S.; Kozmin, S. A. Angew. Chem.,
Int. Ed. 2001, 40, 4274. (b) Sweis, R. F.; Schramm, M. P.; Kozmin, S. A.
J. Am. Chem. Soc. 2004, 126, 7442. (c) Reddy, D. S.; Kozmin, S. A. J.
Org. Chem. 2004, 69, 4860. (d) Zhang, L.; Kozmin, S. A. J. Am. Chem.
Soc. 2004, 126, 10204-10205.
(5) Structure C is used to illustrate the movement of electron density during
the conversion of Au-alkyne complex B to carbene D, which may proceed
directly as previously suggested in ref 3a.
Formation of the cyclohexadiene products can be rationalized
using the mechanistic analysis presented in Scheme 3. Coordination
of the π-acidic AuCl with siloxy alkyne A, followed by intramo-
lecular attack by the proximate alkene (structure B), promotes
cyclization to give cyclopropyl gold carbene D.5 Formation of
similar intermediates has been postulated in the reported Pt- and
Au-catalyzed cycloisomerizations of enynes to give [3,1,0] and
[4,1,0] bicyclic structures.2,3 The presence of the siloxy moiety,
however, dramatically alters the subsequent mechanistic scenario.
We propose that the formation of the observed cyclohexadiene
products can be explained by the subsequent 1,2-alkyl shift to give
oxocarbenium ion E, which undergoes another 1,2-shift, followed
by fragmentation of the intermediate F. Depending on the nature
of the R2 substituent at the 3-position of the enyne, the subsequent
intermediate gold carbenoid can undergo two alternative 1,2-hydride
shifts (structures G and H). Subsequent elimination of AuCl results
JA046112Y
9
J. AM. CHEM. SOC. VOL. 126, NO. 38, 2004 11807