G. V. M. Sharma, Ch. Govardhan Reddy / Tetrahedron Letters 45 (2004) 7483–7485
7485
2. (a) Takano, S.; Seton, M.; Ogasawara, K. Tetrahedron:
Asymmetry 1992, 3, 533–534; (b) Bennett, F.; Knight, D.;
Fenton, G. J. Chem. Soc., Perkin Trans. 1 1991, 1543–
1547; (c) Bennett, F.; Knight, D.; Fenton, G. Heterocycles
1989, 29, 639–642; (d) Yang, Y. L.; Falck, J. R. Tetrahe-
dron Lett. 1982, 23, 4305–4308.
3. (a) Sharma, G. V. M.; Chandramouli, Ch. Tetrahedron
Lett. 2002, 43, 9159–9161; (b) Sharma, G. V. M.;
Chandramouli, Ch. Tetrahedron Lett. 2003, 44, 8161–
8163.
4. Hanessian, S.; Ugolini, A.; Dube, D.; Glamyan, A. Can. J.
Chem. 1984, 62, 2146.
5. Diter Acker, R. Tetrahedron Lett. 1978, 19, 2399–
2402.
6. Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102,
5976.
7. (a) Minami, N.; Ko, S.; Kishi, Y. J. Am. Chem. Soc. 1982,
104, 1109; (b) Ma, P.; Martin, V. S.; Masamune, S.;
Sharpless, K. B.; Viti, S. M. J. Org. Chem. 1982, 47,
1378.
protection of acid 3, in the present synthesis. Oxidative
deprotection of the PMB group in 22 using DDQ in
aq CH2Cl2 gave the hydroxy ester 4 in 73% yield, ready
for coupling with segment 3.
Esterification of acid 3 with alcohol 4 under Yamaguchi
conditions gave 23 (66%), which on PMB deprotection
furnished 24 in 69% yield (Scheme 3). Selective cleavage
of the p-toluenesulfonylethyl group in 24 was effected
with DBN in C6H6 to give seco acid 2 (68%), which on
lactonization under Yamaguchi conditions10 (2,4,6-trich-
lorobenzoyl chloride, Et3N, THF, DMAP, toluene) af-
forded 25 in 61% yield. Finally, deprotection of the
benzyl groups in 24 was effected with TiCl4 (1equiv) in
CH2Cl2 at 0°C to give synthetic 1 as a colorless oil in
25
D
1
76% yield, ½aꢁ þ 8:2 (c 0.3, CHCl3). The H and 13C
NMR data and optical rotation value of synthetic 111
were in good accordance with those of the natural
product.1
8. Dalcanala, E.; Montanari, F. J. Org. Chem. 1986, 51, 567–
569.
9. Colvin, E. W.; Purcell, T. A.; Raphael, R. A. J. Chem.
Soc., Perkin Trans. 1 1976, 1718.
In conclusion, a synthesis of verbalactone (1) by a com-
bination of chiral pool and asymmetric approaches has
been achieved.
10. Inanga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi,
M. Bull. Chem. Soc. Jpn. 1979, 52, 1989–1993.
25
11. Spectral data of verbalactone (1): Colorless oil, ½aꢁD +8.2
25
(c 0.3, CHCl3); lit.1 ½aꢁD þ 7:3 (c 0.9, CHCl3); IR (neat):
3518, 1710, 1265, 1170cmꢀ1. 1H NMR (CDCl3, 400MHz):
d 0.85 (t, 6H, J = 7.0Hz, H-17, 22), 1.22–1.31 (m, 12H, H-
14, 15, 16,19, 20, 21), 1.49–1.55 (m, 4H, H-13, 18), 1.96
(td, 2H, J = 15.2, 4.2Hz, H-5a, 11a), 2.05 (ddd, 2H,
J = 15.2, 10.2, 3.1Hz, H-5b, 11b), 2.68 (d, 4H, J = 3.6Hz,
H-3, 9), 3.73 (br s, 2H, 3-OH, 10-OH), 4.06 (ddd, 2H,
J = 4.2, 3.6, 3.1Hz, H-4, 10), 4.94 (ddd, 2H, J = 10.2, 4.7,
4.6Hz, H-6, 12); 13C NMR (CDCl3, 300MHz): d 13.91,
22.45, 25.52, 31.42, 31.78, 38.24, 39.29, 64.97, 72.57,
172.91; FAB MS (m/z, %): 373 (M++1, 32), 187 (94), 151
(26), 127 (100), 93 (34), 55 (44).
Acknowledgements
Ch.G.R. is thankful to UGC, New Delhi for financial
assistance.
References and notes
1. (a) Magiatis, P.; Spanakis, D.; Mitaku, S.; Tsitsa, E.;
Mentis, A.; Harvala, C. J. Nat. Prod. 2001, 64, 1093–1094.