K. Nakamura et al. / Tetrahedron Letters 45 (2004) 7221–7224
7223
ArSe
PBu3
H
H3C
O
COOtBu
FmocNH
COO-Allyl
H
H
pentavalent intramolecular mechanism (A)
H3C
Se
2a
3a
(threo)
(erythro)
OR
H
SN2
FmocNH
COO-Allyl
H
+
H3C
O
P+Bu3
ArSe-
H3C
O
FmocNH
H
4a
elimination
OAllyl
FmocNH
COO-Allyl
phosphonium bi-molecular mechanism (B)
Figure 3. Reaction mechanism of selenoether formation.
9. Shimohigashi, Y.; Stammer, G. H. J. Chem. Soc., Perkin
Trans. 1 1983, 803–808.
elevated temperature. In addition, the dehydroamino
acid as an undesired product can be produced through
its elimination from the six-membered ring intermediate
with the assistance of strong phosphorus–oxygen inter-
action. b-Elimination reaction would proceed through
trans-relationship between the a-proton and the b-oxy-
phosphonium by formation of six-membered ring. The
geometry of the double bond (anti relationship between
the methyl and the ester) was clearly explained by this
reaction model regardless of the relative stereochemistry
at the a and b positions.
10. For example, kahalalide
F contains Z-DAbu and
Sch20561 contains E-DAbu, respectively.
11. Horikawa, E.; Kodaka, M.; Nakahara, Y.; Okuno, H.;
Nakamura, K. Tetrahedron Lett. 2001, 42, 8337–8339.
12. Nakamura, K.; Ohnishi, Y.; Horikawa, E.; Konakahara,
T.; Kodaka, M.; Okuno, H. Tetrahedron Lett. 2003, 44,
5445–5448.
13. Indirect syntheses of b-selenoether of amino acids from
cyclic compounds were reported: Higashibayashi, S.;
Kohno, M.; Goto, T.; Suzuki, K.; Mori, T.; Hashimoto,
K.; Nakata, M. Tetrahedron Lett. 2004, 45, 3707–3712;
Also see: Zhou, H.; vander Donk, W. A. Org. Lett. 2002,
4, 1335–1338; Zhu, Y.; Gieselman, M. D.; Zhou, H.;
Averin, O.; vander Donk, W. A. Org. Biomol. Chem. 2003,
1, 3304–3315.
In summary, we succeeded in the selective synthesis of
Z- and E-DAbu by selecting L- and L-allo-threonine as
starting materials and using selenation and oxidative
elimination processes with a selenyl linker. Since the use-
fulness of this linker for solid-phase synthesis of
dehydropeptides has been demonstrated,12,13 it should
be possible to synthesize natural dehydropeptides
including both E- and Z-DAbu by a solid-phase method.
14. Compound 3a: HRMS calcd for C33H35NO678Se m/z
25
619.1635, found m/z 619.1657; ½aꢁD +3.6 (c 1.0, CHCl3);
IR (film) 1716, 1508, 1303, 1216, 757cmꢀ1 1H NMR
;
(CDCl3) d 1.48 (3H, d, J = 6.8Hz), 1.58 (9H, s), 3.72 (1H,
m), 4.23 (1H, t, J = 7.5Hz), 4.38 (2H, d, J = 7.5Hz), 4.63
(2H, d, J = 5.9Hz, overlapped), 4.67 (1H, m, overlapped),
5.27 (1H, br d, J = 10.5Hz), 5.34 (1H, br d, J = 18.2Hz),
5.53 (1H, br d, J = 8.7Hz, NH), 5.90(1H, m), 7.32
(1H+2H, arom), 7.40(2H, arom), 7.59 (2H, arom), 7.76
(1H+2H, arom), 7.91 (1H, arom), 8.22 (1H, arom).
Compound 3b: HRMS calcd for C33H35NO678Se m/z
Acknowledgements
We would like to thank Professor Tadashi Nakata of
Tokyo University of Science for many helpful
discussions.
24
619.1635, found m/z 619.1641; ½aꢁD +44.3 (c 1.2 CHCl3);
IR (film) 1718, 1508, 1301, 1216, 758cmꢀ1 1H NMR
;
(CDCl3) d 1.54 (3H, d, J = 6.8Hz), 1.59 (9H, s), 3.91 (1H,
m), 4.25 (1H, t, J = 4.7Hz), 4.40(3H, overlapped), 4.68
(1H, dd, J = 3.2, 9.1Hz), 5.18 (1H, br d, J = 10.5Hz), 5.23
(1H, br d, J = 16.9Hz), 5.66 (1H, d, J = 9.1Hz, NH), 5.72
(1H, m), 7.33 (1H+2H, arom), 7.41 (2H, arom), 7.61 (2H,
arom), 7.74 (1H, arom), 7.78 (2H, arom), 7.91 (1H, arom),
8.19 (1H, arom). Compound 4a: colorless needles mp 73–
74°C (hexane–EtOAc); HRMS calcd for C22H21NO4 m/z
363.1468, found m/z 363.1458; IR (film) 1716, 1503, 1272,
References and notes
1. Humphrey, J. M.; Chamberlin, R. Chem. Rev. 1997, 97,
2243–2266.
2. Schmidt, U.; Lieberknecht, A.; Wild, J. Synthesis 1988,
159–172.
3. Okuno, T.; Ishita, Y.; Sawai, K.; Matsumoto, T. Chem.
Lett. 1974, 635–638.
1216, 757cmꢀ1
;
1H NMR (CDCl3) d 1.80(3H, d,
4. Ueno, T.; Nakashima, T.; Hayashi, Y.; Fukami, H. Agric.
Biol. Chem. 1975, 39, 1115–1122.
5. Afonso, A.; Hon, F.; Brambilla, R. J. Antibiot. 1999, 52,
J = 7.2Hz), 4.26 (1H, t, J = 6.9Hz), 4.45 (2H, d,
J = 6.9Hz), 4.68 (2H, d, J = 5.9Hz), 5.26 (1H, dd,
J = 1.4, 10.5Hz), 5.34 (1H, dd, J = 1.4, 16.9Hz), 5.94
(1H, m), 6.30(1H, br s, NH), 6.83 (1H, q, J = 7.2Hz), 7.32
(2H, arom), 7.41 (2H, arom), 7.67 (2H, arom), 7.77 (2H,
arom). Compound 4b: colorless needles mp 113–115°C
(hexane–EtOAc); HRMS calcd for C22H21NO4 m/z
363.1468, found m/z 363.1465; IR (KBr) 1726, 1705,
383–397.
`
´
`
´
6. Lopez-Macia, A.; Jimenez, J. C.; Royo, M.; Giralt, E.;
Albericio, F. J. Am. Chem. Soc. 2001, 123, 11398–11401.
7. Kolasa, T.; Gross, E. Int. J. Pept. Protein Res. 1982, 20,
259–266.
1
8. Nomoto, S.; Sano, A.; Shiba, T. Tetrahedron Lett. 1979,
20, 1049–1052.
1529, 1260, 1191cmꢀ1; H NMR (CDCl3) d 2.10(3H, d,
J = 7.3Hz), 4.25 (1H, t, J = 7.2Hz), 4.42 (2H, d,