4
Tetrahedron Letters
(b) Cosford, N. D. P.; Tehrani, L.; Roppe, J.; Schweiger, E.;
Smith, N. D.; Anderson, J.; Bristow, L.; Brodkin, J.; Jiang, X.;
McDonald, I.; Rao, S.; Washburn, M.; Varney, M. A. J. Med.
Chem. 2003, 46, 204; (c) Enyedy, I. J.; Sakamury, S.; Zaman, W.
A.; Johnson, K. M.; Wang, S. Biorg. Med. Chem. Lett. 2003, 13,
513; (d) Faul, M. M.; Ratz, A. M.; Sullivan, K. A.; Trankle, W.
G.; Winnerroski, L. L. J. Org. Chem. 2001, 66, 5772.
In conclusion, SnCl2·2H2O has been found to be an effective
precatalyst for the synthesis of pyridine derivatives via an MCR
in pure water. The methodology involved 4-component reaction
of alkyl / (hetero)aryl aldehydes, β-keto esters (or 1,3-diketones),
anilines and malononitrile in the presence of air. The reaction
seemed to proceed via in situ generation of Sn(IV) species that
actually catalyzed the MCR in water. This operationally simple
methodology afforded a range of polysubstituted pyridines
including 4-alkyl/heteroaryl derivatives in good (78-91%) yields.
Many of these pyridines are amenable for further
functionalization to generate diversity based library of molecules
of potential pharmacological interest. The use of less expensive
catalyst in aqueous media and good yield of products with wider
substrate scope are the key features of this methodology. The
methodology therefore may find applications both in organic and
medicinal chemistry.
8. (a) Chenand, M. Z.; Micalizio, G. C. J. Am. Chem. Soc. 2012, 134,
1352, and references therein; (b) Henry, G. D. Tetrahedron, 2004,
60, 6043; (c) Murugan, R.; Scriven, E. F. J. Heterocycl. Chem.
2000, 37, 451.
9. (a) Siddiqui, Z. N.; Ahmed, N.; Farooq, F.; Khan, K. Tetrahedron
Lett. 2013, 54, 3599; (b) Evdokimov, N. M.; Magedov, I. V.;
Kireev, A. S.; Kornienko, A. Org. Lett. 2006, 8, 899; (c)
Evdokimov, N. M.; Kireev, A. S.; Yakovenko, A. A.; Antipin, M.
Y.; Magedov, I. V.; Kornienko, A. J. Org. Chem. 2007, 72, 3443;
(d) Ranu, B. C.; Jana, R.; Sowmiah, S. J. Org. Chem. 2007, 72,
3152; (e) Sridhar, M.; Ramanaiah, B. C.; Narsaiha, C.; Mahesh,
B.; Kumarswamy, M.; Mallu, K. K. R.; Ankathi, V. M.; Rao, P. S.
Tetrahedron Lett. 2009, 50, 3897; (f) Thirmurugan, P.; Perumal,
P. T. Tetrahedron 2009, 65, 7620; (g) Xin, X.; Wang, Y.; Kumar,
S.; Liu, X.; Lin, Y.; Dong, D. Org. Biomol. Chem. 2010, 8, 3078;
(h) Shaabani, A.; Seyyedhamzeh, M.; Maleki, A.; Behnam, M.;
Rezazadeh, F. Tetrahedron Lett 2009, 50, 2911.
Acknowledgements
D. N. K. Reddy thanks Dr. Krishanji Thadipatri, Dr. H
Ramamohan, Dr. Vilas Dhanukar and the management of CPS,
DRL, Hyderabad, India for support and encouragements.
10. Reddy, T. R.; Reddy, G. R.; Reddy, L. S.; Jammula, S.; Lingappa,
Y.; Kapavarapu, R.; Meda, C. L. T.; Parsa, K. V. L.; Pal, M. Eur.
J. Med. Chem. 2012, 48, 265.
11. He, X.; Shang, Y.; Yu, Z.; Fang, M.; Zhou, Y.; Han, G.; Wu, F. J.
Org. Chem. 2014, 79, 8882.
Supplementary data
12. (a) Pal, M.; Batchu, V. R.; Dager, I.; Swamy, N. K.; Padakanti, S.
J. Org. Chem. 2005, 70, 2376; (b) Gade, N. R.; Devendram, V.;
Pal, M.; Iqbal, J. Chem. Commun. 2013, 49, 7926.
Supplementary data associated with this article can be found,
in the on line version, at xxxxxxxxx
13. Typical procedure for the synthesis of 5a: To a mixture of
benzaldehyde (1a, 1 mmol), ethyl aceto acetate (2a, 1 mmol), o-
toluedine (3a, 1 mmol), and malononitrile (4, 1 mmol) in water (4
mL) was added SnCl2.2H2O (10 mol%) at room temp. The mixture
was then stirred at 60 °C for 8h in the presence of air. After
completion of the reaction (indicated by TLC) the mixture was
diluted with EtOAc (4 mL), and filtered. The residue was washed
with EtOAc (3 x 2 mL). The filtrates were combined. The
separated organic layer was collected, washed with cold water (4
mL), dried over anhydrous Na2SO4, filtered and concentrated
under low vacuum. The residue was purified by column
chromatography over silica gel using EtOAc-hexane to give the
desired productas an off white solid; mp: 178.2-180.6 °C; Rf =
0.62, mobile phase: 20% Ethyl acetate: Hexane; IR (KBr): 3344,
2214, 1717, 1559, 1479, 1446, 1366, 1275, 1137, 1077, 770, 669
cm−1; 1H NMR (400 MHz, CDCl3): δ 7.96 (d, J = 8.0 Hz, 1H),
7.48-7.45 (m, 3H), 7.40-7.37 (m, 2H), 7.28-7.27 (m, 1H), 7.26-
7.25 (m, 1H), 7.14-7.11 (m, 1H), 7.07 (s, 1H), 3.98 (q, J = 7.2 Hz,
2H), 2.53 (s, 3H), 2.34 (s, 3H), 0.88 (t, J = 7.2 Hz, 3H); 13C NMR
(100 MHz, CDCl3): δ 167.3, 160.4, 155.8, 153.8, 136.4, 135.9,
130.6, 130.2, 129.4, 128.5 (2C), 127.8 (2C), 126.5, 125.0, 123.0,
120.2, 115.9, 90.5, 61.2, 23.8, 18.07, 13.4; HRMS (ESI) ([M] +1)
calcd for C23H22N3O2: 372.1712, found: 372.1704. Spectral data of
5b: off white solid; mp: 193.6-195.6 °C; Rf = 0.65, mobile phase:
20% Ethyl acetate: Hexane; IR (KBr): 3407, 2215, 1719, 1680,
1557, 1520, 1479, 1430, 1215, 1046, 771, 669 cm−1; 1H NMR
(400 MHz, CDCl3): δ 8.03 (d, J = 8.0 Hz, 1H), 7.49-7.46 (m, 3H),
7.39-7.37 (m, 2H), 7.26-7.21 (m, 2H), 7.20-7.17 (m, 1H), 7.13-
7.05 (m, 1H), 3.48 (s, 3H), 2.82 (q, J = 7.6 Hz, 2H), 2.54 (s, 3H),
1.27 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 167.9,
161.5, 156.1, 153.6, 136.5, 135.7, 130.5, 129.5, 128.6 (2C), 127.8
(2C), 127.2, 127.1, 126.4, 124.7, 122.9, 116.0, 90.4, 52.0, 25.0,
18.0, 12.7; HRMS (ESI) ([M] +1) calcd for C23H22N3O2: 372.1712,
found 372.1730.
References and notes
1. (a) Maiti, S.; Biswas, S.; Jana, U. J. Org. Chem. 2010, 75, 1674;
(b) Toure, B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439; (c) Gu,
Y. L. Green Chem. 2012, 14, 2091; (d) Domling, A.; Ugi, I.
Angew. Chem., Int. Ed. 2000, 112, 3168; (e) Gers, C. F.;
Nordmann, J.; Kumru, C.; Frank,W.; Muller, T. J. J. J. Org. Chem.
2014, 79, 3296.
2. (a) Maiti, B.; Chanda, K.; Selvaraju, M.; Tseng, C. -C.; Sun, C. -
M. ACS Comb. Sci. 2013, 15, 291; (b) Ganem, B. Acc. Chem. Res.
2009, 42, 463; (c) Isambert, N.; Duque, M. M. S.; Plaquevent, J.
C.; Genisson, Y.; Rodriguez, J.; Constantieux, T. Chem. Soc. Rev.
2011, 40, 1347; (d) Bhattacharya, A. K.; Rana, K. C.; Raut, D. S.;
Mhaindarkar, V. P.; Khan, M. I. Org. Biomol. Chem. 2011, 9,
5407.
3. (a) For a review, see: Abbiati, G. and Rossi, E. Beilstein J. Org.
Chem. 2014, 10, 481.
4. (a) Hatakeyama,T.; Imayoshi, R.;Yoshimoto,Y.; Ghorai, S. K.;
Jin, M.; Takaya, H.; Norisuye, K.; Sohrin,Y.; Nakamura, M. J.
Am. Chem. Soc. 2012, 134, 20262; (b) Nguyen, T. B.; Ermolenko,
L.; Al-Mourabit, A. J. Am. Chem. Soc. 2013, 135, 118; (c) Li, W.-
J.; Zheng, X.-J.; Li, Z.-P. Adv. Synth. Catal. 2013, 355, 181; (d)
Sengoden, M.; Punniyamurthy, T. Angew. Chem., Int. Ed. 2013,
52, 572; (e) Sengupta, T.; Gayen, K. S.; Pandit, P.; Maiti, D. K.
Chem. Eur. J. 2012, 18, 1905; (f) Zhu,S.-F.; Xiao, Y.-L.; Guo, Z.-
J.; Jiang, H.-F. Org. Lett. 2013, 15, 898; (g) Becerra-Figueroa, L.;
Ojeda-Porras, A.; Gamba-Sanchez, D. J. Org. Chem. 2014, 79,
4544.
5. (a) Taylor, R. J. K.; Reid, M. Tetrahedron Lett. 2004, 45, 4181;
(b) Taylor, R. J. K.; Schmidt, P. J.; Moyon, C. M.; Cox, R. J.;
Cayley, A. N. Tetrahedron Lett. 2007, 48, 6556; (c) Russowsky,
D.; Lopes, F. A.; da Silva, V. S. S.; Canto, K. F. S.; D’Oca, M. G.
M.; Godoi, M. N. J. Braz. Chem. Soc. 2004, 15, 165; (d)
14. Nechamkin, H. The Chemistry of the Elements. New York:
McGraw-Hill, 1968.
Akiyama, T.; Onuma, Y. J. Chem. Soc., Perkin Trans. 1, 2002,
15. For further confirmation we have performed the reaction of 1a (1
mmol), 2a (1 mmol), 3a (1 mmol) and 4 (1 mmol) in the presence
of SnCl4 (10 mol%) in water (4 mL) at 60° C for 8h when the
desired product 5a was isolated in 84% yield. It is therefore
evident that SnCl4 generated in situ from SnCl2 is the actual
catalytic species in the present MCR.
1157; (e) Wang, M.; Song, Z.; Zhang, T. J. Heterocyclic Chem.
2010, 47, 468. (f) Sahoo, L.; Singhamahapatra, A.; Paul, K. J. V.;
Loganathan, D. Tetrahedron Lett. 2013, 54, 5361. (g) Zhang, Z.
G.; Wang, D.; Wang, B.; Liu, Q. F.; Liu, T. X.; Zhang, W.; Yuan,
B. B.; Zhao, Z. J.; Han, D. D.; Zhang, G. S. Tetrahedron 2013,
69, 9063. (h) Hu, S.Q.; Zhang, Z. F.; Song, J. L.; Zhou, Y. X.;
Han, B.X. Green Chem. 2009, 11, 1746. (i) Zhao, Y. J.; Loh, T. P.
Chem. Commun. 2008, 1434.
6. For reviews, see: (a) Plunkett, A. O. Nat. Prod. Rep. 1994, 11,
581; (b) Daly, J. W.; Pinder, A. R. Nat. Proc. Rep. 1992, 9, 491;
(c) Spande, T. F. In The Alkaloids; Brossi, A., Ed.; Academic
Press: New York, 1987; Vol.31.
7. For selected example, see: (a) Sutherland, A.; Gallagher, T.;
Sharples, C. G. V.; Wonnacott, S. J. Org. Chem. 2003, 68, 2475;