Communications
[7] H. V. Huynh, T. Lügger, F. E. Hahn, Eur. J. Inorg. Chem. 2002,
3007 – 3009.
Experimental Section
All synthetic manipulations were carried out under argon in Schlenk
[8] H. V. Huynh, W. W. Seidel, T. Lügger, R. Fröhlich, B. Wibbeling,
F. E. Hahn, Z. Naturforsch. B 2002, 57, 1401 – 1408.
[9] J.-F. Pons, J.-L. Fauchre, F. Lamaty, A. Molla, R. Lazaro, Eur. J.
Org. Chem. 1998, 853 – 859.
[10] W. H. Rastetter, T. J. Erickson, M. C. Venuti, J. Org. Chem. 1981,
46, 3579 – 3590.
[11] M. Albrecht, Chem. Rev. 2001, 101, 3457 – 3497.
[12] M. Albrecht, R. Fröhlich, J. Am. Chem. Soc. 1997, 119, 1659 –
1661.
[13] a) M. J. Hannon, S. Bunce, A. J. Clarke, N. W. Alcock, Angew.
Chem. 1999, 111, 1353 – 1355; Angew. Chem. Int. Ed. 1999, 38,
1277 – 1278; b) M. Albrecht, M. Napp, M. Schneider, P. Weis, R.
Fröhlich, J. Chem. Soc. Chem. Commun. 2001, 409 – 410; c) M.
Albrecht, M. Napp, M. Schneider, P. Weis, R. Fröhlich, Chem.
Eur. J. 2001, 7, 3966 – 3975.
flasks. Solvents were dried, distilled, and stored under argon. Correct
elemental analyses (C, H, N, S) were obtained for all compounds.
H4-1: Yield 59% relative to 2. 1H NMR (300 MHz, [D7]DMF,
assignment of signals given in Figure 1): d = 10.44 (s, br, 2H, OH),
9.10 (t, 1H, Ha), 8.25 (s, 1H, He), 7.60 (d, 3J = 7.8 Hz, 1H, Hb), 7.49 (d,
3J = 8.2 Hz, 1H, Hf), 7.35 (d, 3J = 7.8 Hz, 1H, Hd), 7.12 (t, 3J = 7.8 Hz,
3
3
1H, Hc), 7.05 (d, J = 8.2 Hz, 1H, Hh), 6.78 (t, J = 8.2 Hz, 1H, Hg),
5.59 (s, br, 2H, SH), 3.82 (d, 2H, CH2), 1.56 ppm (s, 6H, CH3);
13
=
=
C NMR (75 MHz, [D7]DMF): d = 171.40 (C O), 169.93 (C O),
150.58, 147.51, 137.56, 133.98, 131.59, 130.63, 126.09, 125.63, 119.55,
118.83, 118.03, 116.07 (CAr), 56.12 (CH2C(CH3)2), 48.39
(CH2C(CH3)2), 24.87 ppm (CH2C(CH3)2); MALDI-MS (positive
ions): m/z (%): 393 (100) [M + H]+.
Na(PNP)3[Ti2[(1)3] was prepared by stirring ligand H4-1 (104 mg,
0.26 mmol), [TiO(acac)2] (45 mg, 0.17 mmol), and Na2CO3 (18 mg,
0.17 mol) in methanol at room temperature for 72 h. Subsequently,
the solvent was removed and the solid obtained was redissolved in
methanol. After addition of bis(triphenylphosphoranylidene)ammo-
nium chloride (PNPCl) (98 mg, 0.17 mmol) of the reaction mixture
was filtered. Slow diffusion of diethyl ether into the filtrate yielded
60 mg (0.06 mmol, 23%) of red-brown crystals of (PNP)3Na[Ti2(1)3]·
CH3OH·H2O·Et2O. 1H NMR (500 MHz, [D7]DMF, solvent-free com-
pound, assignment of signals given in Figure 1): d = 9.80 (t, br, 3H,
[14] E. C. Constable, F. Heirtzler, M. Neuburger, Z. Zehnder, J. Am.
Chem. Soc. 1997, 119, 5606 – 5617.
[15] a) E. J. Enemark, T. D. P. Stack, Angew. Chem. 1995, 107, 1082 –
1084; Angew. Chem. Int. Ed. Engl. 1995, 34, 996 – 998; b) B.
Kersting, M. Meyer, R. E. Powers, K. N. Raymond, J. Am. Chem.
Soc. 1996, 118, 7221 – 7222; c) C. Brückner, R. E. Powers, K. N.
Raymond, Angew. Chem. 1998, 110, 1937 – 1940; Angew. Chem.
Int. Ed. 1998, 37, 1837 – 1839.
[16] a) T. D. P. Stack, T. B. Karpishin, K. N. Raymond, J. Am. Chem.
Soc. 1992, 114, 1512 – 1514; b) T. B. Karpishin, T. D. P. Stack,
K. N. Raymond, J. Am. Chem. Soc. 1993, 115, 182 – 192; c) T. B.
Karpishin, T. D. P. Stack, K. N. Raymond, J. Am. Chem. Soc.
1993, 115, 6115 – 6125; d) T. B. Karpishin, T. M. Dewey, K. N.
Raymond, J. Am. Chem. Soc. 1993, 115, 1842 – 1851.
[17] The term meso-helicate, which is often used in the literature, is
not applicable here owing to the two different stereocenters
{TiS6} and {TiO6} present.
3
Ha), 8.14 (s, br, 3H, He), 7.80–7.60 (m, 90H, HAr, PNP), 7.15 (d, J =
7.8 Hz, 3H, Hb), 7.08 (d, 3J = 7.5 Hz, 3H, Hf), 6.98 (d, 3J = 7.5 Hz, 3H,
Hh), 6.65 (t, 3J = 7.5 Hz, 3H, Hg), 6.32 (t, 3J = 7.8 Hz, 3H, Hc), 6.21 (d,
3J = 7.8 Hz, 3H, Hd), 4.81 (s, br, 6H, CH2), 1.38 ppm (s, br, 18H, CH3);
13C NMR (125 MHz, [D7]DMF, solvent-free compound): d = 169.41
=
=
(C O), 167.44 (C O), 161.81, 161.40, 155.24, 152.05, 135.63 (CAr, 1),
134.34, 133.08, 133.03, 132.98, 130.24, 130.19, 130.11, 128.48, 128.46,
127.62 (CAr, PNP), 128.22, 123.03, 121.85, 117.86, 116.47, 115.56,
112.29 (CAr, 1), 54.98 (CH2C(CH3)2), 49.46 (CH2C(CH3)2), 25.16 ppm
(br, CH2C(CH3)2); MS (ESI, negative ions): m/z (%): 630.7 (100)
[18] X-ray diffraction study: Crystals of Na(PNP)3[Ti2(1)3]·CH3OH·
H2O·Et2O were obtained by diffusion of diethyl ether into a
methanol solution of Na(PNP)3[Ti2(1)3], C167H154N9NaO15P6-
S6Ti2, Mr = 3023.96, red crystal, 0.10 0.07 0.04 mm3, P1, a =
13.594(3), b = 17.190(4), c = 18.900(4) , a = 66.722(4), b =
[Ti2(1)3 + 2H]2ꢀ
.
Received: April 1, 2004
79.188(4),
g = 82.523(4)8,
V= 3977.6(15) 3,
1calcd =
Keywords: chirality · helical structures · O,S ligands ·
1.262 gcmꢀ3, m = 0.306 mmꢀ1, semi-empirical absorption correc-
tion (0.9701 ꢁ Tꢁ 0.9879), w- and f-scans, 24856 measured
intensities (2.48 ꢁ 2q ꢁ 45.28), 20191 independent (Rint = 0.0583)
and 13406 observed (I ꢂ 2s(I)) intensities, l = 0.71073 , T=
123(2) K, Z = 1, R = 0.0771, wR2 = 0.1645 (refinement against
hF2i with H atoms on calculated positions). The diethyl ether
molecule in the unit cell is disordered, positional parameters for
the hydrogen atoms of the water and methanol OH protons were
not determined. CCDC 234748 contains the supplementary
crystallographic data for this paper. These data can be obtained
from the Cambridge Crystallographic Data Centre, 12 Union
Road, Cambridge CB21EZ, UK; fax: (+ 44)1223-336-033; or
deposit@ccdc.cam.ac.uk).
.
supramolecular chemistry · titanium
[1] a) J. M. Lehn, Supramolecular Chemistry:Concepts and Per-
spectives, VCH, Weinheim, 1995, Chapter 9; b) C. Piguet, G.
Bernardinelli, G. Hopfgarten, Chem. Rev. 1997, 97, 2005 – 2062;
c) C. A. Schalley, A. Lützen, M. Albrecht, Chem. Eur. J. 2004, 10,
1072 – 1080.
[2] M. Albrecht, Chem. Soc. Rev. 1998, 27, 281 – 287.
[3] a) F. E. Hahn, W. W. Seidel, Angew. Chem. 1995, 107, 2938 –
2941; Angew. Chem. Int. Ed. Engl. 1995, 34, 2700 – 2703;
b) W. W. Seidel, F. E. Hahn, T. Lügger, Inorg. Chem. 1998, 37,
6587 – 6596; c) W. W. Seidel, F. E. Hahn, J. Chem. Soc. Dalton
Trans. 1999, 2237 – 2241.
[4] H. V. Huynh, C. Schulze Isfort, W. W. Seidel, T. Lügger, R.
Fröhlich, O. Kataeva, F. E. Hahn, Chem. Eur. J. 2002, 8, 1327 –
1335.
[5] a) T. J. McMurry, M. W. Hosseini, T. M. Garrett, F. E. Hahn,
Z. E. Reyes, K. N. Raymond, J. Am. Chem. Soc. 1987, 109, 7196 –
7198; b) T. M. Garrett, T. J. McMurry, M. W. Hossaini, Z. E.
Reyes, F. E. Hahn, K. N. Raymond, J. Am. Chem. Soc. 1991, 113,
2965 – 2977.
[19] a) B. A. Borgias, S. R. Cooper, Y. B. Koh, K. N. Raymond, Inorg.
Chem. 1984, 23, 1009 – 1016; b) F. E. Hahn, S. Rupprecht, K. H.
Moock, J. Chem. Soc. Chem. Commun. 1991, 224 – 225.
[20] M. Könemann, W. Stüer, K. Kirschbaum, D. M. Giolando,
Polyhedron 1994, 13, 1415 – 1425.
[21] R. Krꢀmer, J.-M. Lehn, A. De Cian, J. Fischer, Angew. Chem.
1993, 105, 764 – 767; Angew. Chem. Int. Ed. Engl. 1993, 32, 703 –
706.
[22] R. Krꢀmer, J. M. Lehn, A. Marquis-Rigault, Proc. Natl. Acad.
Sci. USA 1993, 90, 5394 – 5398.
[23] F. E. Hahn, C. Schulze Isfort, R. Fröhlich, unpublished results.
[6] T. E. Burrow, R. H. Moras, A. Hills, D. L. Hughes, R. L.
Richards, Acta Crystallogr. 1993, C49, 1591 – 1594.
4810
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 4807 –4810