Organic Letters
Letter
Chem. Soc. 2008, 130, 12886. (h) Du, J.; Skubi, K. L.; Schultz, D. M.;
Yoon, T. P. Science 2014, 344, 392. (i) Nguyen, J. D.; Matsuura, B. S.;
Stephenson, C. R. J. J. Am. Chem. Soc. 2014, 136, 1218. (j) Nguyen, J. D.;
D′Amato, E. M.; Narayanam, J. M. R.; Stephenson, C. R. J. Nat. Chem.
which may then engage on three competing pathways, i.e.,
addition to 1-chloro-4-ethynylbenzene to produce the desired
vinylated tetrahydrofuran product, or recombine with hydroxyl
radical at different stages to furnish structures 10 and 11,
respectively. The beneficial roles of HCOOH and 4 Å molecular
sieves in the context are likely attributable to their scavenging of
11 and water that could have been formed when the hydroxyl
radical abstracts hydrogen from tetrahydrofuran.
́ ́
2012, 4, 854. (k) Condie, A. G.; Gonzalez-Gomez, J. C.; Stephenson, C.
R. J. J. Am. Chem. Soc. 2010, 132, 1464. (l) Furst, L.; Narayanam, J. M. R.;
Stephenson, C. R. J. Angew. Chem., Int. Ed. 2011, 50, 9655. (m) Kalyani,
D.; McMurtrey, K. B.; Neufeldt, S. R.; Sanford, M. S. J. Am. Chem. Soc.
́
2011, 133, 18566. (n) Andrews, R. S.; Becker, J. J.; Gagne, M. R. Angew.
In summary, motivated by an initial design concept of
exploring direct vinylation of tetrahydrofuran through combin-
ing the power of C−H functionalization and visible light
photocatalysis, we have established a straightforward and
versatile protocol that employed abundantly available alkynes
as vinyl-function donors and operated under exceptionally mild
reaction conditions. Of central importance to this discovery is
likely the identification of mutual and synergistic parameters that
allows for reliable generation of the tetrahydrofuran α-oxy radical
intermediate. With this robust reactive species in hand, many
further synthetic utilities could well be conceived on a wider
platform of visible light photocatalysis, and new developments
will thus be continuously pursued and reported in due course.
Chem., Int. Ed. 2010, 49, 7274. (o) Zhu, S.; Das, A.; Bui, L.; Zhou, H.;
Curran, D. P.; Rueping, M. J. Am. Chem. Soc. 2013, 135, 1823. (p) Zou,
Y. Q.; Lu, L. Q.; Fu, L.; Chang, N. J.; Rong, J.; Chen, J. R.; Xiao, W. J.
Angew. Chem., Int. Ed. 2011, 50, 7171. (q) Kohls, P.; Jadhav, D.; Pandey,
G.; Reiser, O. Org. Lett. 2012, 14, 672. (r) Li, J.; Cai, S. Y.; Chen, J. T.;
Zhao, Y. H.; Wang, D. Z. Synlett 2014, 25, 1626. (s) Arceo, E.; Montroni,
E.; Melchiorre, P. Angew. Chem., Int. Ed. 2014, 53, 12064. (t) Fan, W. G.;
Li, P. X. Angew. Chem., Int. Ed. 2014, 53, 12201. (u) Cai, S. Y.; Zhao, X.
Y.; Wang, X. B.; Liu, Q. S.; Li, Z. G.; Wang, D. Z. Angew. Chem., Int. Ed.
2012, 51, 8050. (v) Cherevatskaya, M.; Neumann, M.; Fuldner, S.;
̈
Harlander, C.; Kummel, S.; Dankesreiter, S.; Pfitzner, A.; Zeitler, K.;
̈
̈
Konig, B. Angew. Chem., Int. Ed. 2012, 51, 4062. (w) Kisch, H. Angew.
Chem., Int. Ed. 2013, 52, 812. (x) Mitoraj, D.; Kisch, H. Angew. Chem.,
Int. Ed. 2008, 47, 9975. (y) Parrino, F.; Ramakrishnan, A.; Kisch, H.
Angew. Chem., Int. Ed. 2008, 47, 7107. (z) Kisch, H.; Zang, L.; Lange, C.;
Maier, W. F.; Antonius, C.; Meissner, D. Angew. Chem., Int. Ed. 1998, 37,
3034.
ASSOCIATED CONTENT
* Supporting Information
■
S
(4) (a) Hari, D. P.; Konig, B. Chem. Commun. 2014, 50, 6688.
̈
(b) Neumann, M.; Fuldner, S.; Konig, B.; Zeitler, K. Angew. Chem., Int.
̈
̈
Experimental procedures and spectral data for all new
compounds. This material is available freeof charge via the
Ed. 2011, 50, 951. (c) Hari, D. P.; Schroll, P.; Konig, B. J. Am. Chem. Soc.
2012, 134, 2958. (d) Hari, D. P.; Konig, B. Org. Lett. 2011, 13, 3852.
̈
̈
́
(e) Cantillo, D.; de Frutos, O.; Rincon, J. A.; Mateos, C.; Kappe, C. O.
Org. Lett. 2014, 16, 896. (f) Meng, Q. Y.; Zhong, J. J.; Liu, Q.; Gao, X.
W.; Zhang, H. H.; Lei, T.; Li, Z. J.; Feng, K.; Chen, B.; Tung, C. H.; Wu,
L. Z. J. Am. Chem. Soc. 2013, 135, 19052.
AUTHOR INFORMATION
Corresponding Author
■
(5) (a) Alali, F. Q.; Liu, X. X.; McLaughlin, J. L. J. Nat. Prod. 1999, 62,
504. (b) Elliott, M. C. J. Chem. Soc., Perkin Trans. 1 2002, 2301. (c) Jalce,
G.; Franck, X.; Figadere, B. Tetrahedron: Asymmetry 2009, 20, 2537.
̀
(d) Vilotijevic, I.; Jamison, T. F. Angew. Chem., Int. Ed. 2009, 48, 5250.
(e) Wolfe, J. P.; Hay, M. B. Tetrahedron 2007, 63, 261. (f) Bermejo, A.;
Notes
The authors declare no competing financial interest.
̀
Figadere, B.; Zafra-Polo, M. C.; Barrachina, I.; Estornell, E.; Cortes, D.
ACKNOWLEDGMENTS
■
Nat. Prod. Rep. 2005, 22, 269. (g) Dutton, C. J.; Banks, B. J.; Cooper, C.
B. Nat. Prod. Rep. 1995, 12, 165.
We thank the NSFC (Grant Nos. 20972008 and 21290180 to
D.Z.W.), the national “973 Project” of the State Ministry of
Science and Technology (Grant No. 2013CB911500 to D.Z.W.),
the Shenzhen Bureau of Science andTechnology, and the
Shenzhen “ShuangBai Project” for financial support.
(6) (a) Kawashima, T.; Nakamura, M.; Inamoto, N. Phosphorus, Sulfur
Silicon Relat. Elem. 1992, 69, 293. (b) Kawashima, T.; Nakamura, M.;
Inamoto, N. Heterocycles 1997, 44, 487.
(7) Clark, A. J.; Rooke, S.; Sparey, T. J.; Taylor, P. C. Tetrahedron Lett.
1996, 37, 909.
(8) Xiang, J.; Fuchs, P. L. J. Am. Chem. Soc. 1996, 118, 11986.
(9) Zhang, J. J.; Li, P. H.; Wang, L. Org. Biomol. Chem. 2014, 12, 2969.
(10) Zhao, J. C.; Zhou, W.; Han, J. L.; Li, G. G.; Pan, Y. Tetrahedron
Lett. 2013, 54, 6507.
REFERENCES
■
(1) (a) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. (b) Godula,
K.; Sames, D. Science 2006, 312, 67. (c) Bergman, R. G. Nature 2007,
446, 391.
(11) Jiang, Y. J.; Shih, Y. K.; Liu, J. Y.; Kuo, W. Y.; Yao, C. F. Chem.
(2) For selected recent reviews on photoredox catalysis, see: (a) Xuan,
J.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 6828. (b) Prier, C. K.;
Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(c) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40,
102. (d) Ravelli, D.; Dondi, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev.
2009, 38, 1999. (e) Tucker, J. W.; Stephenson, C. R. J. J. Org. Chem.
2012, 77, 1617. (f) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2,
527. (g) Zeitler, K. Angew. Chem., Int. Ed. 2009, 48, 9785. (h) Shi, L.; Xia,
W. J. Chem. Soc. Rev. 2012, 21, 7687. (i) Fagnoni, M.; Dondi, D.; Ravelli,
D.; Albini, A. Chem. Rev. 2007, 107, 2725. (j) Schultz, D. M.; Yoon, T. P.
Science 2014, 343, 1239176.
(3) (a) Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224.
(b) McNally, A.; Prier, C. K.; MacMillan, D. W. C. Science 2011, 334,
1114. (c) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.
(d) Qvortrup, K.; Rankic, D. A.; MacMillan, D. W. C. J. Am. Chem. Soc.
2014, 136, 626. (e) Noble, A.; MacMillan, D. W. C. J. Am. Chem. Soc.
2014, 136, 11602. (f) Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2009, 131,
14604. (g) Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am.
Eur. J. 2003, 9, 2123.
(12) Huang, L. H.; Cheng, K.; Yao, B. B.; Zhao, J. L.; Zhang, Y. H.
Synthesis 2009, 20, 3504.
(13) Tusun, X.; Lu, C. D. Synlett 2013, 24, 1693.
(14) Kadota, I.; Lutete, L. M.; Shibuya, A.; Yamamoto, Y. Tetrahedron
Lett. 2001, 42, 6207.
(15) Chen, Z. L.; Zhang, Y. X.; An, Y.; Song, X. L.; Wang, Y. H.; Zhu, L.
L.; Guo, L. Eur. J. Org. Chem. 2009, 5146.
(16) Zhang, Y. H.; Li, C. J. Tetrahedron Lett. 2004, 45, 7581.
(17) Noble, A.; McCarver, S. J.; MacMillan, D. W. C. J. Am. Chem. Soc.
2015, 137, 624.
(18) Djerassi, C. Steroids 1992, 57, 631.
D
Org. Lett. XXXX, XXX, XXX−XXX