374
H. GAO et al.
5) Toda, M., Kawabata, J., and Kasai, T., Inhibitory effects
of ellagi- and gallotannins on rat intestinal ꢀ-glucosidase
complexes. Biosci. Biotechnol. Biochem., 65, 542–547
(2001).
6) Baker, W., The synthesis of 5,6-dihydroxyflavone and
structure of primetin. J. Chem. Soc., 956–961 (1939).
7) Morimoto, M., Animoto, K., Nakano, S., Ozaki, T.,
Nakano, A., and Komai, K., Insect antifeedant activity of
flavones and chromones against Spodoptera litura. J.
Agric. Food Chem., 51, 389–393 (2003).
8) Yang, F., Li, X. C., Wang, H. Q., and Yang, C. R.,
Flavonoid glycosides from Colebrookea oppositifolia.
Phytochemistry, 42, 867–869 (1996).
9) Mutri, V. S., Seshadri, T. R., Sundaresan, V., and
Benkataramani, B., Synthetic experiments in the benzo-
pyrone series. LXVI. Relative stability of isomeric 6-
methyl- and 8-methyltrihydroxyflavones. Proc. Indian
Acad. Sci., 46A, 265–271 (1957).
10) Ryu, S. H., Yoo, B. T., and Ahn, B. Z., Synthese einiger
gegen L1210-Zellen cytotoxischer flavone. Arch. Pharm.
(Weinheim), 318, 659–661 (1985).
Fig. 1. Lineweaver-Burk Plots of the Inhibition of Rat Intestinal ꢀ-
Glucosidase Activity by Baicalein (1).
Mixed inhibition, Ki¼0:11 mM, Km¼12:3 mM.
11) Bois, F., Beney, C., Mariotte, A., and Boumendjel, A., A
one-step synthesis of 5-hydroxyflavones. Synlett, 9,
1480–1482 (1999).
12) Shaw, S. C., Jha, A. S., and Gupta, A., Synthesis of
5,6,7,8,20,40,50-heptamethoxyflavone (Agecorynin-C). J.
Indian Chem. Soc., 67, 684–685 (1990).
was incubated with increasing concentration of sucrose
(6.25 mM–50 mM). The result, plotted according to
Lineweaver-Burk, revealed a fully mixed inhibiting
type on the enzyme and Ki value of 1 on sucrose-
hydrolyzing activity was 0.11 mM (Fig. 1).
13) Agasimundin, Y. S., and Siddappa, S., A convenient
method for the synthesis of baicalein (5,6,7-trihdyroxy-
flavone) and 40-methylgamatin (4-methoxy-3-methyl-7-
phenylfuro[3,4-g][1]benzopyran-5-one). J. Chem. Soc.
Perkin Trans. I, 503–505 (1973).
14) Rao, Y. K., Rao, C. V., Kishore, P. H., and Gunasekar,
D., Total synthesis of heliannone A and (R,S)-heliannone
B, two bioactive flavonoids from Helianthus annuus
Cultivars. J. Nat. Prod., 64, 368–369 (2001).
15) Wymann, W. E., Davis, R., Patterson, J. W. Jr., and
Pfister, J. R., Selective alkylations of certain phenolic
and enolic functions with lithium carbonate/alkyl halide.
Synth. Commun., 18, 1379–1384 (1988).
16) Ouertani, M., Girard, P., and Kagan, H. B., Selective
nitration of phenols catalyzed by lanthanum (III) nitrate.
Tetrahedron Lett., 42, 4315–4318 (1982).
17) Felix, A. M., Cleavage of protecting groups with boron
tribromide. J. Org. Chem., 39, 1427–1429 (1974).
18) Cushman, M., Zhu, H., Geahlen, R. L., and Kraker, A. J.,
Synthesis and biochemical evaluation of a series of
aminoflavones as potential inhibitors of protein-tyrosine
kinase p56lck, EGFr, and p60v-src. J. Med. Chem., 37,
3353–3362 (1994).
19) Smith, W. E., Formylation of aromatic compounds with
hexamethylenetetramine and trifluoroacetic acid. J. Org.
Chem., 37, 3972–3973 (1972).
20) Xie, L., Takeuchi, Y., Cosentino, L. M., Mcphail, A. T.,
and Lee, K. H., Anti-AIDS agents. 42. synthesis and
anti-HIV activity of disubstituted (30R,40R)-30,40-di-O-
(S)-camphanoyl-(+)-cis-khellactone analogues. J. Med.
Chem., 44, 664–671 (2001).
21) Ichikawa, M., Hibino, S., Onishi, N., and Hatcher, J. F.,
Selective halogenation of flavones by hydrohalogenic
acids on oxidation system. Org. Prep. Proced. Int., 17,
56–60 (1985).
In summary, 1 is a potent rat intestinal ꢀ-glucosidase
inhibitor with mixed inhibitory mechanism. The SAR
studies indicated that 5,6,7-trihdyroxyflavone structure
was crucial for the activity, and validated the importance
of the 6-hydroxyl substitution previously described. And
also, 8-substituted derivatives of 1 tended to decrease
the activity regardless of electronic nature of the
substituents. Hence, it was suggested that possible
excess steric bulkiness around position 8 was detrimen-
tal for the potent inhibitory activity.
Acknowledgments
We are grateful to Mr. Kenji Watanabe and Dr. Eri
Fukushi, GC-MS & NMR Laboratory, Faculty of
Agriculture, Hokkaido University, for mass spectral
measurements.
References
1) Baron, A. D., Postprandial hyperglycemia and ꢀ-gluco-
sidase inhibitors. Diabetes Res. Clin. Pr., 40 (Suppl),
S51–S55 (1998).
2) Nishioka, T., Kawabata, J., and Aoyama, Y., Baicalein,
an ꢀ-glucosidase inhibitor from Scutellaria baicalensis.
J. Nat. Prod., 61, 1413–1415 (1998).
3) Kawabata, J., Mizuhata, K., Sato, E., Nishioka, T.,
Aoyama, Y., and Kasai, T., 6-hydroxyflavonoids as ꢀ-
glucosidase inhibitors from marjoram (Origanum majo-
rana) leaves. Biosci. Biotechnol. Biochem., 67, 445–447
(2003).
4) Toda, M., Kawabata, J., and Kasai, T., ꢀ-glucosidase
inhibitors from Clove (Syzgium aromaticum). Biosci.
Biotechnol. Biochem., 64, 294–298 (2000).
22) Umemoto, T., Fukami, S., Tomizawa, G., Harasawa, K.,