10.1002/ejoc.201901474
European Journal of Organic Chemistry
FULL PAPER
1
1498 s, 1432 w; H-NMR (400 MHz, (CD3)2SO) δH 7.18 (d, J = 2.7
Bredhikhina, A. V. Kurenkov, O. A. Antonovich, A. V. Pashagin,
A. A. Bredikhin, Tetrahedron: Asymmetry, 2014, 25(13), 1015-
1021
Hz, 1H, C6-H), 7.13 – 7.07 (m, 2H, C3-H & C4-H), 4.94 (d, J = 5.0
Hz, 1H, CH-OH), 4.84 (d, J = 5.0 Hz, 1H, CH-OH), 4.66 (t, J = 5.7 Hz,
1H, CH2-OH), 4.59 (t, J = 5.7 Hz, 1H, CH2-OH), 4.01 – 3.85 (m, 3H), [10] Asymmetric induction in sterically bulky alkenes is diminished or
3.86 – 3.69 (m, 6H, Me), 3.55 – 3.35 (m, 4H); 13C-NMR (101 MHz,
(CD3)2SO) δC 166.1 (CO2Me), 152.2 (C5), 152.0 (C2), 121.0 (C1),
119.8 (C3/C4), 115.95 (C3/C4), 115.91 (C6), 71.3 (O-CH2), 70.4 (O-
CH2), 69.9 (2C, CH-OH), 62.73 (CH2-OH), 62.67 (CH2-OH), 52.0
(Me); LRMS m/z (ESI+) 339.12 (100%, [M+Na]+); HRMS m/z (ESI+)
C14H20O8Na requires 339.1056, found 339.1057 ([M+Na]+)
inhibited.
A
possible explanation involves the relative
destabilisation of the transition state, which, is alkene
dependent. However, the complexity of this hypothesis makes it
difficult to account for steric effects.a,b Alternative hypotheses
propose different alkene OsO4-ligand binding, as the “U-shape”
like ‘binding pocket’ of the Sharpless ligands can potentially
tolerate the presence of sterically bulky substituents.c,d Density
functional
theory,e
transition
state
calculationsf
and
Acknowledgements
computational tools to help predict the stereochemical outcome
exist.g However, this is limited to simple mono-alkenes. (a) H. C.
Kolb, P. G. Andersson, K. B. Sharpless, J. Am. Chem. Soc.
1994, 116, 1278-1291; (b) H. Becker, P. T. Ho, H. C. Kolb, S.
Loren, P. O. Norrby, K. B Sharpless, Tetrahedron Lett. 1994, 35,
7315; (c) E. J. Corey, M. C. Noe, S. Sarshar, J. Am. Chem. Soc.,
1993, 115, 3828-3829; (d) E. J. Corey, M. C. Noe, J. Am. Chem.
Soc. 1996, 118, 319-329; (e) P. O. Norrby, H. C. Kolb, K. B.
Sharpless, Organometalics 1994, 13, 344-347; (f) Y. D. Wu, Y.
Wang, K. N. Houk, J. Am. Chem. Soc, 1999, 121, 10186-10192;
(g) N. Moitessier, C. Henry, C. Len, Y. Chapleur, J. Org. Chem.
2002, 67, 7275-7282
The authors thank Dr Allen Bowden and Centre for Chemical
Analysis at the School of Chemistry for analytical support, Dr Liam
Cox and Dr Kim Roper for helpful discussions and Phenomenex® for
preliminary cHPLC screening. D.M.G. thanks the University of
Birmingham for a PhD scholarship.
Keywords: Asymmetric Dihydroxylation ● Sharpless ●Tandem
● Diastereodifferentiation ● Stereofacial selectivity
[11] K. Morikawa, K. B. Sharpless, Tetrahedron Lett. 1993, 34, 5575-
5578.
References
[12] (a) Y.-T. He, S Xue, T-S. Hu, Z-J. Yau, Tetrahedron Lett. 2005,
46, 5393-5397;(b) T. J. Donohoe, R. M. Harros, J. Burrows, J.
Parker, J. Am. Chem. Soc. 2006, 128, 13704-13705; (c) I.
Paterson, E. A. Anderson, S. M. Dalby, J. H. Lim, P. Maltas, C.
Moessner, Chem. Commun. 2006, 4186-4188; (d) For a report
of tandem AD of 1,5-hexadiene see: M. E. Maier, S. Reuter,
Liebigs Ann. Recueil. 1997, 2043-2046
[13] (a) A. M. Mahmoud, A. M. Jones, F. J. Wilkinson, M. Romero, J.
Duarte, Y. M. Alexander, Biochim. Biophys. Acta Gen. Subj.
2017, 1861, 3311-3322; (b) A. M. Mahmoud, A. M. Jones, G.
Sidgwick, A. M. Arafat, F. L. Wilkinson, Y. M. Alexander, Cell.
Phys. Biochem. 2019, 53, 323-336; (c) A. W. W. Langford-Smith,
A. Hassan, R. Weston, N. Edwards, A. M. Jones, A. J. M.
Boulton, F. L. Bowling, S. T. Rashid, F. L. Wilkinson, M. Y.
Alexander, Sci. Rep. 2019, 9, 2309.
[1] For a recent review on using the AD in the total synthesis of
natural products see: M. M. Heravi, V. Zadsirjan, M. Esfandyari,
T. B. Lashaki; Tetrahedron Asymm. 2017, 28, 987-1043.
[2] L. Ahrgren, L. Sutin; Org. Proc. Res. Dev. 1997, 1, 425-427.
[3] S. Dongbang, B. Pederson, J. A. Ellman, Chem. Sci. 2019, 10, 535-
541.
[4] (a) E. J. Corey, M. C. Noe, M. J. Grogan, Tetrahedron Lett.
1996, 37, 4899-4902; (b) T. Göbel, K. B. Sharpless, Angew.
Chem. Int. Ed. 1993, 32, 1329-1331; (c) A. J. Del Monte, J.
Haller, K. N. Houk, K. B. Sharpless, D. A. Singleton, T.
Strassner, A. A. Thomas, J. Am. Chem. Soc. 1997, 119, 9907-
9908.
[5] E. N. Jacobsen, I. Marko, W. S. Mungall, G. Schroeder, K. B.
Sharpless, J. Am. Chem. Soc. 1988, 110, 1968-1970.
[6] The Sharpless mnemonic device is
a semi-empirical tool
[14] E. A. Raiber, J. A. Wilkinson, F. Manetti, M. Botta, J. Deakin, J.
Gallagher, M. Lyon, S. W. Ducki, Bioorg. Med. Chem. Lett. 2007,
17, 6321-6325. Note: Similar compounds were reported as
single diastereoisomers and not diastereoisomeric mixtures.
[15] W. H. Brooks, W. C. Guida, K. G. Daniel, Curr. Top. Med. Chem.
2011, 11, 760-770.
designed to predict the stereochemical outcome of any given AD
based on the alkene’s substituents: (a) H. C. Kolb, M. S. Van
Nieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483-2547.
For the first report of ADmix and phalazine (PHAL)-based
ligands see: (b) K. B Sharpless, W. Amberg, Y. L. Bennani, G. A.
Crispino, J. Hartung, K.-S. Jeong, H.-L. Kwong, K. Morikawa, Z.-
2771.
[16] Mosher’s acid derivatives for 19F NMR spectroscopic analysis
was considered. However, analysis of complex mixtures of
diastereoisomers would be less a direct read out of the reaction
than cHPLC.
[17] The racemic diol ±2 was screened on proprietary chiral
stationary phases (Phenomenex®) under reverse phase (H2O
and acetonitrile) and normal phase (hexane and isopropyl
alcohol/ethanol) conditions.
[18] ±3 gave the best preliminary results and the conditions were
optimised using 28% acetonitrile/72% H2O, 1.0 mL min–1 at 30
°C, see supplementary data for further details.
[19] See supplementary data 2R,5R-5, 2S,5S-5, 2R,5S-5 and 2S,5S-
5
[7] Z.-M. Wang, X.-L. Zhang, K. B. Sharpless, Tetrahedron Lett.
1993, 34, 2267-2270.
[8] (a) A. Guzman-Perez, E. J. Corey, Tetrahedron Lett. 1997, 38,
5941-5944; (b) E. J. Corey, A. G. Perez and M. C. Noe, J. Am.
Cham. Soc., 1995, 117, 10805-10816
[9] (a) R. A. Fernandes, P. Kumar, Tetrahedron Lett. 2000, 41,
10309-10312; (b) J. M. Gardiner, S. E. Bruce, Tetrahedron Lett.
1998, 39, 1029-1032; (c) N. H. Ertel, B. Dayal, K. Rao, G. Salen,
Lipids, 1999, 34, 395-405; (d) P. Salvadori, S. Superchi, F.
Minutolo, J. Org. Chem. 1996, 61, 4190-4191; (e) M. Iwashima,
T. Kinsho, A. B. Smith, Tetrahedron Lett. 1995, 36, 2199-2202;
(f) D. J. Krysan, Tetrahedron Lett. 1996, 37, 1375-1376; (g) Z. A.
This article is protected by copyright. All rights reserved.