Letters
J ournal of Medicinal Chemistry, 2004, Vol. 47, No. 22 5335
(7) (a) Souto, A. A.; Acun˜a, A. U.; Amat-Guerri, F. A general and
practical synthesis of linear conjugated pentaenoic acids. Tet-
rahedron Lett. 1994, 35, 5907-5910. (b) Reyes Mateo, C.; Souto,
A. A.; Amat-Guerri, F.; Acun˜a, A. U. New fluorescent octadeca-
pentaenoic acids as probes of lipid membranes and protein-lipid
interactions. Biophys. J . 1996, 71, 2177-2191.
(8) (a) Quesada, E.; Acun˜a, A. U.; Amat-Guerri, F. New transmem-
brane polyene bolaamphiphiles as fluorescent probes in lipid
bilayers. Angew. Chem., Int. Ed. 2001, 40, 2095-2097. (b)
Quesada, E.; Acun˜a, A. U.; Amat-Guerri, F. Synthesis of car-
boxyl-tethered symmetric conjugated polyenes as fluorescent
transmembrane probes of lipid bilayers. Eur. J . Org. Chem.
2003, 1308-1318.
(9) Crousse, B.; Alami, M.; Linstrumelle, G. Stereocontrolled syn-
thesis of (E,E,E)-chlorotrienes: Efficient intermediates for the
construction of all E conjugated polyenes. Tetrahedron Lett.
1997, 38, 5297-5300.
(10) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient
synthesis of acetylenes: catalytic substitutions of acetylenic
hydrogen with bromoalkenes, iodoarenes and bromopyridines.
Tetrahedron Lett. 1975, 16, 4467-4470. (b) Takahashi, S.;
Kuroyama, Y.; Sonogashira, K.; Hagihara, N. A convenient
synthesis of ethynylarenes and diethynylarenes. Synthesis 1980,
627-630.
F igu r e 2. Fluorescence images of (a) normal human periph-
eral blood lymphocytes and (b) human T-leukemic J urkat cells,
both treated for 7 h with 20 µM fluorescent edelfosine analogue
6.17 Practical detection limit was ∼5 µM. The bar represents
10 µm.
domains. Further studies on the biochemical basis of
this selectivity are in progress.
Ack n ow led gm en t. This work was supported by
Grants BQU2000-1500, BQU2003-4413, FIS-02/1199,
and 1FD97-0622 from the Ministerio de Ciencia y
Tecnolog´ıa, Fondo de Investigacio´n Sanitaria (Spain),
and the European Commission. E.Q. and J .D. acknowl-
edge predoctoral grants from the same sources.
(11) Reviews: (a) Campbell, I. B. The Sonogashira Cu-Pd-catalyzed
alkyne coupling reaction. In Organocopper Reagents; Taylor, R.
J . K., Ed.; I.R.L. Press: Oxford, 1994; pp 217-235. (b) Sono-
gashira, K. Cross-coupling reactions to sp carbon atoms. In Metal
Catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J .,
Eds.; Wiley-VCH: Weinheim, Germany, 1998; pp 203-229. (c)
Sonogashira, K. Development of Pd-Cu catalyzed cross-coupling
of terminal acetylenes with sp2-carbon halides. J . Organomet.
Chem. 2002, 653, 46-49. (d) Tykwinski, R. R. Evolution in the
palladium-catalyzed cross-coupling of sp- and sp2-hybridized
carbon atoms. Angew. Chem., Int. Ed. 2003, 42, 1566-1568.
(12) Boland, W.; Pantke S. (Z)-Selective reduction of conjugated
alkynes with Zn (Cu/Ag). J . Prakt. Chem. 1994, 336, 714-715.
(13) Takano, S.; Akiyama, M.; Sato, S.; Ogasawara, K. A facile
cleavage of benzylidene acetals with diisobutylaluminum hy-
dride. Chem. Lett. 1983, 1593-1596.
Su p p or tin g In for m a tion Ava ila ble: Experimental pro-
cedures and analytical and spectral data for 1-6 and ad-
ditional fluorescence data of 6. This material is available free
Refer en ces
(1) Paltauf, F. Ether lipids in biomembranes. Chem. Phys. Lipids
1994, 74, 101-139.
(14) J ia, A.; Haines, H. Diamide analogs of phosphatidyl choline as
potential anti-AIDS agents. J . Chem. Soc., Perkin Trans. 1 1993,
2521-2523.
(2) (a) Munder, P. G.; Westphal, O. Antitumoral and other biomedi-
cal activities of synthetic ether lysophospholipids. Chem. Im-
munol. 1990, 49, 206-235. (b) Houlihan, W. J .; Lohmeyer, M.;
Workman, P.; Cheon, S. H. Phospholipid antitumor agents. Med.
Res. Rev. 1995, 15, 157-223. (c) Arthur, G.; Bittman, R. The
inhibition of cell signaling pathways by antitumor ether lipids.
Biochim. Biophys. Acta 1998, 1390, 85-102. (d) Bittman, R.;
Perkins, W. R.; Swenson, C. E. TLC ELL-12. Drugs Future 2001,
26, 1052-1058. (e) J endrossek, V.; Handrick, R. Membrane
targeted anticancer drugs: potent inducers of apoptosis and
putative radiosensitisers. Curr. Med. Chem. 2003, 3, 343-353.
(f) Croft, S. L.; Seifert, K.; Duchene, M. Antiprotozoal activities
of phospholipid analogues. Mol. Biochem. Parasitol. 2003, 126,
165-172.
(15) Lower yields were obtained with the two-step phosphorylation
frequently used in the synthesis of related phospholipids: (a)
Berchtold, R. Preparation of 1-O-octadecyl-2-O-methyl-sn-glyc-
ero-3-phosphocholine. Chem. Phys. Lipids 1982, 30, 389-392.
(b) Hirth, G.; Barner, R. Synthesis of glyceryletherphosphatides.
I. Preparation of 1-O-octadecyl-2-O-acetyl-sn-glyceryl-3-phos-
phorylcholine (platelet activating factor) of its enantiomer and
of some analogous compounds. Helv. Chim. Acta 1982, 65, 1059-
1084. (c) Stekar, J .; No¨ssner, G.; Kutscher, B.; Engel, J .; Hilgard,
P. Synthesis, antitumor activity, and tolerability of phospholipids
containing nitrogen homologs. Angew, Chem. Int. Ed. Engl. 1995,
34, 238-240.
(16) Cabaner, C.; Gajate, C.; Macho, A.; Mun˜oz, E.; Modolell, M.;
Mollinedo, F. Induction of apoptosis in human mitogen-activated
peripheral blood T-lymphocytes by the ether phospholipid ET-
18-OCH3: involvement of the Fas receptor/ligand system. Br.
J . Pharmacol. 1999, 127, 813-825.
(3) Mollinedo, F.; Ferna´ndez-Luna, J . L.; Gajate, C.; Martı´n-Mart´ın,
B.; Benito, A.; Mart´ınez Dalmau, R.; Modolell, M. Selective
induction of apoptosis in cancer cells by the ether lipid ET-18-
OCH3 (edelfosine): molecular structure requirements, cellular
uptake, and protection by Bcl-2 and Bcl-XL. Cancer Res. 1997,
57, 1320-1328.
(4) Gajate, C.; Fonteriz, R. I.; Cabaner, C.; AÄ lvarez-Noves, G.;
AÄ lvarez-Rodr´ıguez, Y.; Modolell, M.; Mollinedo, F. Intracellular
triggering of Fas, independently of FasL, as a new mechanism
of antitumor ether lipid-induced apoptosis. Int. J . Cancer 2000,
85, 674-682.
(17) Human normal peripheral blood lymphocytes and human T-
leukemia J urkat cells (2.5 × 105 cells/mL) were treated with 20
µM 6 for 7 h in RPMI-1640 culture medium containing 10% fetal
calf serum and washed three times with phosphate buffered
saline containing 1% bovine serum albumin to eliminate loosely
bound 6 to the cells surface. Then 2 × 105 6-treated cells were
settled onto poly-L-lysine-coated slides, fixed in 4% formaldehyde
for 25 min at room temperature, and analyzed using a Zeiss
Axioplan 2 fluorescence microscope (Oberkochen, Germany) and
a Hamamatsu ORCA-ER-1394 digital camera. The extent of
apoptosis was assessed (flow cytometry) as the percentage of cells
with a DNA content of less than G1 (hypodiploidy) in cell cycle
analysis, using propidium iodide staining in permeabilized cells,
after 24 h of incubation with edelfosine or with 5 and 6 in the
presence of 10% fetal calf serum. Untreated control cells run in
parallel showed 2.3 ( 1.0% apoptosis.
(5) Gajate, C.; Mollinedo, F. Biological activities, mechanisms of
action and biomedical prospect of the antitumor ether phospho-
lipid ET-18-OCH3 (edelfosine), a proapoptotic agent in tumor
cells. Curr. Drug Metab. 2002, 3, 491-525.
(6) For the case of the antitumor drug Taxol, see the following. (a)
Souto, A. A.; Acun˜a, A. U.; Andreu, J . M.; Barasoain, I.; Abal,
M.; Amat-Guerri, F. New fluorescent water-soluble taxol deriva-
tives. Angew. Chem., Int. Ed. Engl. 1995, 34, 2710-2712. (b)
Abal, M.; Souto, A. A.; Amat-Guerri, F.; Acun˜a, A. U.; Andreu,
J . M.; Barasoain, I. Centrosome and spindle pole microtubules
are main targets of a fluorescent Taxoid inducing cell death. Cell
Motil. Cytoskeleton 2001, 49, 1-15. (c) Lillo, M. P.; Can˜adas,
O.; Dale, R. E.; Acun˜a, A. U. Location and properties of the taxol
binding center in microtubules: a picosecond laser study with
fluorescent taxoids. Biochemistry 2002, 41, 12436-12449.
(18) Gajate, C.; Mollinedo, F. The antitumor ether lipid ET-18-OCH3
induces apoptosis through translocation and capping of Fas/
CD95 into membrane rafts in human leukemic cells. Blood 2001,
98, 3860-3863.
J M049808A