C O M M U N I C A T I O N S
cation is less able to catch the free anionic-chain end, and thus, the
copolymerization with [PPN]Cl alone yielded a larger amount of
cyclic trithiocarbonate (Table 1, compare run 1 with run 3).
In conclusion, we have reported the alternating copolymerization
of episulfide with CS2 by using [PPN]Cl as initiator and chromium
complex as activator. The obtained copolymer has a completely
alternating sequence and high refractive index. Further studies are
directed toward the elucidation of polymerization mechanism and
improvement in catalytic performance.
Acknowledgment. We are grateful to Prof. Takashi Kato (The
University of Tokyo) for DSC measurements. We also thank
Mitsubishi Gas Chemical Co., Inc. for refractive index measure-
ments. This work was supported by a Grant-in-Aid for Scientific
Research on Priority Areas “Advanced Molecular Transformations
of Carbon Resources” from the Ministry of Education, Culture,
Sports, Science and Technology, Japan.
Figure 1. Comparison of 13C NMR signals of poly(propylene trithiocar-
bonate)s from (a) (R)-propylene sulfide (90% ee) and (b) rac-propylene
sulfide (in CDCl3 + CS2, 125 MHz).
Supporting Information Available: Experimental details, a pro-
posed polymerization mechanism, and NMR spectra. This material is
1b). This is likely to reflect the atactic structure of the main chain
on the basis of the fact that the copolymer from enantio-enriched
PS (90% ee) gives sharp and almost undivided peaks for each of
the carbons (Figure 1a). The thermal analyses of the copolymer
obtained from rac-PS demonstrated that it has glass transition
temperature around 25 °C and decomposes rapidly to cyclic
trithiocarbonate 2 at around 200 °C.11 Such thermal behavior is
similar to that of poly(propylene carbonate).12 Refractive index (nD)
of the obtained copolymer 1 was measured to be 1.78 (22 °C, cast
film), which is classified into the largest values among those of
the reported sulfur-containing polymers.1
Although the reaction mechanism is not clear yet, we speculate
that copolymerization takes place via a similar process to the
alternating copolymerization of epoxide with CO2 (see the Sup-
porting Information):13 Chromium complex should work as Lewis-
acidic center to activate an episulfide. Both of two axial chloride
ligands on the starting chromate complex [(salph)CrCl2][PPN]
would be capable to initiate the polymerization.13d
Preformation of cyclic trithiocarbonate 2 followed by subsequent
ring-opening polymerization is unlikely. Treatment of 2 with a
mixture of [PPN]Cl and complex 3 in CS2 did not afford the
polymeric materials. Furthermore, the reaction of PS with CS2 under
the optimized condition in the presence of cyclic 1,2-butylene
trithiocarbonate gave only pure copolymer 1 and the starting cyclic
carbonate was quantitatively recovered. Accordingly, it was mani-
fested that the copolymer was produced via the direct alternating
copolymerization rather than via cyclic trithiocarbonate formation.
Cyclic trithiocarbonate formation should be via the back-biting
from the anionic thiolate-chain end [-CH2-CHCH3-S-]11 rather
than from the anionic trithiocarbonate-chain end [-SC(dS)-S-].
As mentioned above, the higher concentration of CS2 is effective
to suppress the formation of 2 (Table 1, runs 3-6). Under the higher
CS2 concentration, CS2 insertion should be accelerated, decreasing
the concentration of the thiolate-chain end and increasing the
concentration of the trithiocarbonate-chain end. This corresponds
to the cyclic trithiocarbonate formation mainly from the thiolate-
chain end. We think that the chromium center is also important to
suppress the formation of cyclic trithiocarbonate: the chromium
center effectively catches the free anionic-chain end which would
be more favorable to back-biting than the resulting chromium-
bound-chain end. On the other hand, the non-coordinating organic
References
(1) Marianucci, E.; Berti, C.; Pilati, F.; Manaresi, P.; Guaita, M.; Chiantore,
O. Polymer 1994, 35, 1564.
(2) (a) Imai, T.; Hayakawa, K.; Satoh, T.; Kaga, H.; Kakuchi, T. J. Polym.
Sci., Part A: Polym. Chem. 2002, 40, 3443. (b) Rehor, A.; Tirelli, N.;
Hubbell, J. A. Macromolecules 2002, 35, 8688. (c) Nicol, E.; Bonnans-
Plaisance, C.; Levesque, G. Macromolecules 1999, 32, 4485. (d) Guerin,
P.; Boileau, S.; Subira, F.; Sigwalt, P. Eur. Polym. J. 1980, 16, 121. (e)
Nicco, A.; Bouchero, B. Eur. Polym. J. 1970, 6, 1477.
(3) (a) Azuma, N.; Sanda, F.; Takata, T.; Endo, T. Macromolecules 1998,
31, 1710. (b) Azuma, N.; Sanda, F.; Takata, T.; Endo, T. J. Polym. Sci.,
Part A: Polym. Chem. 1997, 35, 3235.
(4) (a) Nemoto, N.; Ito, Y.; Endo, T. J. Polym. Sci., Part A: Polym. Chem.
2003, 41, 699. (b) Steblyanko, A.; Choi, W. M.; Sanda, F.; Endo, T. J.
Polym. Sci., Part A: Polym. Chem. 2001, 39, 3967. (c) Nemoto, N.; Sanda,
F.; Endo, T. Macromolecules 2000, 33, 7229. (d) Sanda, F.; Kamatani,
J.; Endo, T. Macromolecules 1999, 32, 5715. (e) Kricheldorf, H. R.;
Damrau, D. O. Macromol. Chem. Phys. 1998, 199, 2589. (f) Choi, W.
M.; Sanda, F.; Kihara, N.; Endo, T. J. Polym. Sci., Part A: Polym. Chem.
1997, 35, 3853. (g) Bandiera, M.; Berti, C.; Manaresi, P.; Marianucci,
E.; Pilati, F.; Poloni, M. Makromol. Chem. Macromol. Chem. Phys. 1993,
194, 2453. (h) Rokicki, G.; Kuran, W.; Kielkiewicz, J. Makromol. Chem.
1979, 180, 2779. (i) Kuran, W.; Rokicki, A.; Wielgopolan, W. Makromol.
Chem. 1978, 179, 2545.
(5) (a) Sanda, F.; Jirakanjana, D.; Hitomi, M.; Endo, T. Macromolecules 1999,
32, 8010. (b) Sanda, F.; Jirakanjana, D.; Hitomi, M.; Endo, T. J. Polym.
Sci., Part A: Polym. Chem. 2000, 38, 4057.
(6) (a) You, Y. Z.; Hong, C. Y.; Pan, C. Y. Macromol. Rapid Commun. 2002,
23, 776. (b) Leung, L. M.; Chan, W. H.; Leung, S. K. J. Polym. Sci.,
Part A: Polym. Chem. 1993, 31, 1799. (c) Braun, D.; Kiessel, M. Monatsh.
Chem. 1965, 96, 631.
(7) (a) Soga, K.; Imamura, H.; Sato, M.; Ikeda, S. J. Polym. Sci., Part A:
Polym. Chem. 1976, 14, 677. (b) Soga, K.; Sato, M.; Imamura, H.; Ikeda,
S. J. Polym. Sci., Part C: Polym. Lett. 1975, 13, 167.
(8) Triethylamine-catalyzed copolymerization of ethylene sulfide with CS2
was also reported, although the experimental details were not described,
see: Razuvaev, G. A.; Etlis, V. S.; Grobov, L. N. Zh. Obshch. Khim.
1963, 33, 1366.
(9) Darensbourg, D. J.; Mackiewicz, R. M.; Phelps, A. L.; Billodeaux, D. R.
Acc. Chem. Res. 2004, 37, 836.
(10) Chisholm, M. H.; Navarro-Llobet, D.; Zhou, Z. P. Macromolecules 2002,
35, 6494.
(11) Thermal degradation of polydithiocarbonate was reported. See: Montaudo,
G.; Puglisi, C.; Berti, C.; Marianucci, E.; Pilati, F. J. Polym. Sci., Part A:
Polym. Chem. 1989, 27, 2277.
(12) Inoue, S.; Tsurita, T.; Takeda, T.; Miyazaki, N.; Kanbe, M.; Takaoka, J.
J. Appl. Polym. Sci. Appl. Polym. Symp. 1975, 26, 257.
(13) (a) Lu, X. B.; Shi, L.; Wang, Y. M.; Zhang, R.; Zhang, Y. J.; Peng, X. J.;
Zhang, Z. C.; Li, B. J. Am. Chem. Soc. 2006, 128, 1664. (b) Cohen, C.
T.; Coates, G. W. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 5182.
(c) Darensbourg, D. J.; Phelps, A. L. Inorg. Chem. 2005, 44, 4622. (d)
Cohen, C. T.; Chu, T.; Coates, G. W. J. Am. Chem. Soc. 2005, 127, 10869.
(e) Aida, T.; Ishikawa, M.; Inoue, S. Macromolecules 1986, 19, 8.
JA076056B
9
J. AM. CHEM. SOC. VOL. 129, NO. 49, 2007 15117