N. S. Choi et al. / Tetrahedron Letters 45 (2004) 8053–8056
8055
attests to the significant synthetic utility of the angular
hydroxymethyl directed cycloaddition approach in
termsof the rapid accesto a variety of pimaraditerp-
enes. Considering necessity of incorporation and
removal of the regiocontrolling group (e.g., –SPh) in
the diene for the intermolecular cycloaddition, this
approach seems to be advantageous in synthetic effi-
ciency in spite of low regioselectivity for natural pimara-
diterpenes. As a synthetic application, the synthesis of
the isopimaradiene 5 has also been accomplished in
19% overall yield through 13 linear steps from the
known decalone 8. At present, improvement of the
regioselectivity of the key intramolecular Diels–Alder
reaction and development of novel anti-inflammatory
pimaraditerpenesby employing thisapproach are in
good progress and the successful results will be pub-
lished in due courses.
O
O
HO
HO
CO2Me
a
b,c
H
H
H
H
H
H
13
6b
14
TsO
d
e
H
H
H
H
15
5
Scheme 3. Reagentsand condition:s (a) NaOMe, MeOH, 95%; (b)
DIBAL, toluene, À78°C; (c) PPh3+CH3BrÀ, NaH, THF, 81% from 13;
(d) TsCl, pyridine, 100%; (e) NaI, Zn, HMPA, 110°C, 70%.
tube gave the optimum result (entry 3). Considering that
the type 2 intramolecular Diels–Alder reaction for the
tetherscontaining three to five atomsproduces
the meta-regioisomer7b such as 13, it isnoticeable that
the cycloaddition of 7 in xylene provided the reversed
regioselectivity (entry 4) favoring the para-regioisomer,
although the selectivity was not significant. Moreover,
the intermolecular cycloaddition of the diene 7 isknown
to produce only meta-regioisomer.6 Employing Lewis
acid such as Me2AlCl wasnot helpful for the improve-
ment of yield and regioselectivity. The general prefer-
ence of the unnatural regioisomer 13 islikely due to
the favorable orientation of the dienophile for 13 in
the type 2 intramolecular Diels–Alder reaction.7b,13
Acknowledgements
This research work was supported by the grant from
Center for Bioactive Molecular Hybrids, Yonsei
University.
References and notes
1. (a) Evidente, A.; Sparapano, L.; Motta, A.; Giordano, F.;
Fierro, O.; Frisullo, S. Phytochemistry 1996, 42, 1541; (b)
Ma, G.-X.; Wang, T.-S.; Yin, L.; Pan, Y.; Guo, Y.-L.;
LeBlanc, G. A.; Reinecke, M. G.; Watson, W. H.;
Krawiec, M. J. Nat. Prod. 1998, 61, 112; (c) Barrero, A.
F.; Quilez Del Moral, J. F.; Lucas, R.; Paya, M.; Akssira,
M.; Akaad, S.; Mellouki, F. J. Nat. Prod. 2003, 66, 844;
(d) Nan, J.-X.; Park, E.-J.; Nam, J.-B.; Zhao, Y.-Z.; Cai,
X.-Fu.; Kim, Y.-H.; Shon, D.-H.; Lee, J.-J. J. Ethnophar-
macol. 2004, 92, 71.
The regioselectivity for the natural pimaraditerpene 2 is
expected being improved by a tether elongation as
reported in the precedents.7b However, at thistsage,
we were inspired by the recent report that the methyl
ester of the unnatural pimaraditepene 4, inhibitsup to
99% of TNF-a production at noncytotoxic concentra-
tion3e coupled with the perfect stereo- and regioselectiv-
ity of the intramolecular cycloaddition for 5, which is
not synthetically accessible from the natural product.
Thus, we decided to pursue the completion of total syn-
thesis of the isopimaradiene 5 in view of the medicinal
chemistry standpoint as shown in Scheme 3.
2. Kim, Y.-H.; Chung, B. S.; Sankawa, U. J. Nat. Prod.
1988, 51, 1080.
3. (a) Kang, H.-S.; Kim, Y.-H.; Lee, C.-S.; Lee, J.-J.; Choi,
I.; Pyun, K.-H. Cell. Immunol. 1996, 170, 212; (b) Kang,
H.-S.; Song, H. K.; Lee, J.-J.; Pyun, K.-H.; Choi, I.
Mediat. Inflamm. 1998, 7, 257; (c) Suh, Y.-G.; Kim, Y.-H.;
Park, M.-H.; Choi, Y.-H.; Lee, H.-K.; Moon, J.-Y.; Min,
K.-H.; Shin, D.-Y.; Jung, J.-K.; Park, O.-H.; Jeon, R.-O.;
Park, H.-S.; Kang, S.-A. Bioorg. Med. Chem. Lett. 2001,
11, 559; (d) Cai, X.-F.; Shen, G.; Dat, N.-T.; Kang, O.-H.;
Kim, J.-A.; Lee, Y.-H.; Lee, J.-J.; Kim, Y.-H. Chem.
Pharm. Bull. 2003, 51, 605; (e) Lam, T.; Ling, T.;
Chowdhury, C.; Chao, T.; Bahjat, F. R.; Lyoyd, G. K.;
Moldawer, L. L.; Palladino, M. A.; Theodorakis, E. A.
Bioorg. Med. Chem. Lett. 2003, 13, 3217; (f) Kim, J.-A.;
Kim, D.-K.; Kang, O.-H.; Choi, Y.-A.; Choi, S.-C.; Kim,
T.-H.; Han, Y.-H.; Choi, S.-J.; Kim, Y.-H.; Bae, K.-H.;
Lee, Y.-M. Clin. Chim. Acta 2004, 342, 193; (g) Suh,
Y.-G.; Lee, K.-O.; Moon, S.-H.; Seo, S.-Y.; Lee, Y.-S.;
Kim, S.-H.; Paek, S.-M.; Kim, Y.-H.; Lee, Y.-S.; Jeong,
J.-M.; Lee, S.-J.; Kim, S.-G. Bioorg. Med. Chem. Lett.
2004, 14, 3487.
The lactone 13 wasopened with NaOMe to produce the
hydroxy ester 6b, which wastransformed into the corre-
sponding olefin 14 by DIBAL reduction and subsequent
Wittig olefination in 81% overall yield. Finally, tosyl-
ation of the primary alcohol 14, followed by reductive
cleavage of the resulting tosylate 15 using NaI and Zn,
provided the isopimaradiene 5 in 70% yield.14
In summary, we have developed an intramolecular
Diels–Alder route for the stereo- and regioselective syn-
thesis of pimaraditerpenes of structural diversity. As far
as we understand, it is the first example for the type
2 intramolecular Diels–Alder reaction of the bicyclic
system, in which the dienophile is directly tethered.
Although the regioselectivity for the natural pimaradi-
ene wasnot high aswe anticipated, the excellent stereo-
control of the C-8 and C-13/C-14 stereogenic centers as
well as the selective construction of pimaraditerpene
skeletons for both natural and unnatural regioisomers
4. For recent reviewsdealing with TNF- a and IL-1, see: (a)
Camussi, G.; Lupin, E. Drugs 1998, 55, 613; (b) Newton,
R. C.; Decicco, C. P. J. Med. Chem. 1999, 42, 2295; (c)
Palladino, M. A.; Bahjat, F. R.; Theodorakis, E. A.;
Moldawer, L. L. Nat. Rev. Drug Discov. 2003, 2, 736.