T ~ 103(2) K, GOF ~ 1.079. The structures were solved by a direct
method (SIR-97)14 and refined by full-matrix least-squares procedures on
F2 for all reflections (SHELXL-97).15 CCDC 243326 and 243327. See
.cif or other electronic format.
1 Transition metal-catalyzed silaboration reactions: (a) M. Suginome and
Y. Ito, Chem. Rev., 2000, 100, 3221–3256; (b) M. Suginome and Y. Ito,
J. Organomet. Chem., 2003, 680, 43–50; (c) generation of silyl anions:
A. Kawachi, T. Minamimoto and K. Tamao, Chem. Lett., 2001, 30,
1216–1217; (d) generation of silyl radicals: A. Matsumoto and Y. Ito,
J. Org. Chem., 2000, 65, 5707–5711; (e) visible-range absorbing Si–B
chromophores: J.-P. Pillot, M. Birot, E. Bonnefon, J. Dunogue`s,
J.-C. Rayez, M.-T. Rayez, D. Liotard and J.-P. Desvergne, Chem.
Commun., 1997, 1535–1536.
2 For examples see: (a) H. No¨th and G. Ho¨llerer, Angew. Chem., Int. Ed.
Engl., 1962, 1, 551–552; (b) H. No¨th and G. Ho¨llerer, Chem. Ber., 1966,
99, 2197–2205; (c) W. Biffar, H. No¨th and H. Pommerening, Angew.
Chem., Int. Ed. Engl., 1980, 19, 56–57; (d) W. Biffar, H. No¨th and
R. Schwertho¨ffer, Liebigs Ann. Chem., 1981, 2067–2080; (e) J. D. Buynak
and B. Geng, Organometallics, 1995, 14, 3112–3115; (f) E. Bonnefon,
M. Birot, J. Dunogue`s, J.-P. Pillot, C. Courseille and F. Taulelle, Main
Group Metal Chem., 1996, 19, 761–767; (g) M. Suginome, T. Matsuda
and Y. Ito, Organometallics, 2000, 19, 4647–4649.
3 (a) N. Takeda, T. Kajiwara and N. Tokitoh, Chem. Lett., 2001, 30,
1076–1077; (b) T. Kajiwara, N. Takeda, T. Sasamori and N. Tokitoh,
Organometallics, in press.
4 (a) N. Tokitoh, H. Suzuki, R. Okazaki and K. Ogawa, J. Am. Chem.
Soc., 1993, 115, 10428–10429; (b) H. Suzuki, N. Tokitoh, R. Okazaki,
J. Harada, K. Ogawa, S. Tomoda and M. Goto, Organometallics, 1995,
14, 1016–1022; (c) H. Suzuki, N. Tokitoh and R. Okazaki, Bull. Chem.
Soc. Jpn., 1995, 68, 2471–2481.
5 (a) N. Takeda, H. Suzuki, N. Tokitoh, R. Okazaki and S. Nagase, J. Am.
Chem. Soc., 1997, 119, 1456–1457; (b) N. Takeda, T. Kajiwara,
H. Suzuki, R. Okazaki and N. Tokitoh, Chem.-Eur. J., 2003, 9,
3530–3543.
6 T. Ishiyama, M. Murata, T.-a. Ahiko and N. Miyaura, Org. Synth.,
2000, 77, 176–181.
7 S. Luckert, E. Eversheim, U. Englert, T. Wagner and P. Paetzold,
Z. Anorg. Allg. Chem., 2001, 627, 1815–1823.
8 Platinum-catalyzed insertion of carbenes into a B–B bond: (a) H. A. Ali,
I. Goldberg and M. Srebnik, Organometallics, 2001, 20, 3962–3965;
(b) H. A. Ali, I. Goldberg, D. Kaufmann, C. Burmeister and M. Srebnik,
Organometallics, 2002, 21, 1870–1876; (c) insertion of alkenylidene-type
carbenoids into B–B bonds: T. Hata, H. Kitagawa, H. Masai,
T. Kurahashi, M. Shimizu and T. Hiyama, Angew. Chem. Int. Ed.,
2001, 40, 790–792.
9 (a) R. W. Kirk and P. L. Timms, J. Am. Chem. Soc., 1969, 91, 6315–
6318; (b) R. J. Wilcsek, D. S. Matteson and J. G. Douglas, J. Chem. Soc.,
Chem. Commun., 1976, 401–402; (c) J. Pfeiffer, W. Maringgele and
A. Meller, Z. Anorg. Allg. Chem., 1984, 511, 185–192; (d) W. C. Wong,
C. M. Wong, H. Pritzkow and W. Siebert, Z. Naturforsch., B: Chem.
Sci., 1990, 45, 1597–1599.
10 For examples see: (a) D. F. Gaines and T. V. Iorns, J. Am. Chem. Soc.,
1967, 89, 4249–4250; (b) J. C. Calabrese and L. F. Dahl, J. Am. Chem.
Soc., 1971, 93, 6042–6047; (c) A. Tabereaux and R. N. Grimes, J. Am.
Chem. Soc., 1972, 94, 4768–4770; (d) N. S. Hosmane, P. de Meester,
U. Siriwardane, M. S. Islam and S. S. C. Chu, J. Chem. Soc., Chem.
Commun., 1986, 1421–1423; (e) D. M. Schubert, W. S. Rees, Jr.,
C. B. Knobler and M. F. Hawthorne, Organometallics, 1990, 9, 2938–
2944; (f) D. Seyferth, K. D. Bu¨chner, W. S. Rees, Jr., L. Wesemann,
W. M. Davis, S. S. Bukalov, L. A. Leites, H. Bock and B. Solouki, J. Am.
Chem. Soc., 1993, 115, 3586–3594; (g) L. Wesemann, U. Englert and
D. Seyferth, Angew. Chem., Int. Ed. Engl., 1995, 34, 2236–2238;
(h) L. Wesemann and U. Englert, Angew. Chem., Int. Ed. Engl., 1996, 35,
527; (i) J. A. Dopke, A. N. Bridges, M. R. Schmidt and D. F. Gaines,
Inorg. Chem., 1996, 35, 7186–7187.
Fig. 1 ORTEP drawing of 5 (50% probability).
reactions of silylboranes have been reported by Tamao et al.,1c
diborylsilane 5 might be a good precursor for a borylsilyl anion.
When diborylsilane 5 was treated with 4 molar equivalents of
n-BuLi in hexane at 278 uC, the reaction mixture turned deep red.
Addition of chlorotrimethylsilane to this solution gave the
trimethylsilylated silylborane, Tbt(Mes)Si(SiMe3)B(pin) 6, in 61%
yield, the structure of which was confirmed spectrographically and
crystallographically.{ The formation of TMS-substituted silylbor-
ane 6 is most likely interpreted in terms of the reaction of borylsilyl
anion 7, which is generated by a boron–lithium exchange reaction
of 5,1c with chlorotrimethylsilane. It should be noted that the
formation of 7 by the boron–lithium exchange reaction of 5 is the
first example for the generation of a borylsilyl anion.
In summary, we have found a novel reactivity of an overcrowded
diarylsilylene 1, generated from disilene 2 or silylene–isocyanide
complex 3a, with bis(pinacolato)diboron leading to the first
example of the insertion reaction of a silylene into a B–B bond.
Furthermore, the reaction of diborylsilane 5 thus obtained with
n-BuLi resulted in the generation of borylsilyl anion 7, which
was trapped by chlorotrimethylsilane to give the trimethylsilyl-
substituted silylborane 6. Further studies on the structure, stability,
and reactivities of the borylsilyl anion 7, especially on the applica-
tion toward the synthesis of functionalized silylboranes, are
currently in progress.
This work was partially supported by Grants-in-Aid for COE
Research on Elements Science (No. 12CE2005), Scientific Research
on Priority Area (No. 14078213), and the 21st Century COE
Program on Kyoto University Alliance for Chemistry from the
Ministry of Education, Culture, Sports, Science and Technology,
Japan. We thank Central Glass Co., Ltd. for the generous gift of
tetrafluorosilane.
11 (a) Q. Jiang, P. J. Carroll and D. H. Berry, Organometallics, 1993, 12,
177–183; (b) A. Blumenthal, P. Bissinger and H. Schmidbaur,
J. Organomet. Chem., 1993, 462, 107–110; (c) W. Lippert, H. No¨th,
W. Ponikwar and T. Seifert, Eur. J. Inorg. Chem., 1999, 817–823.
12 D. Cremer and J. A. Pople, J. Am. Chem. Soc., 1975, 97, 1354–1358.
13 For a recent review see: P. P. Power, Chem. Rev., 1999, 99, 3463–
3503.
14 A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo,
A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Spagna, J. Appl.
Crystallogr., 1999, 32, 115–119.
Notes and references
{ Crystallographic data for 5: C48H94B2O4Si7, MW ~ 953.48, triclinic,
˚
˚
space group P–1 (no. 2), a ~ 12.189(4) A, b ~ 13.204(5) A, c ~
˚
19.744(7) A, a ~ 79.858(14)u, b ~ 72.051(13)u, c ~ 78.938(16)u, V ~
3
2943.3(17) A , Z ~ 2, Dcalc ~ 1.076 g cm21, R1(I w 2s(I)) ~ 0.0523,
˚
wR2(all data) ~ 0.1221, T ~ 103(2) K, GOF ~ 1.075. Crystallographic
data for 6: C45H91BO2Si8, MW ~ 899.71, triclinic, space group P–1 (no. 2),
˚
˚
˚
3
a ~ 13.100(7) A, b ~ 20.193(10) A, c ~ 24.014(11) A, a ~ 65.154(12)u,
˚
15 G. M. Sheldrick, SHELX-97, Program for the Refinement of Crystal
Structures, University of Go¨ttingen, Go¨ttingen, Germany, 1997.
b ~ 78.169(12)u, c ~ 88.869(18)u, V ~ 5626(5) A , Z ~ 4, Dcalc
~
1.062 g cm21, R1(I w 2s(I)) ~ 0.0605, wR2(all data) ~ 0.1481,
C h e m . C o m m u n . , 2 0 0 4 , 2 2 1 8 – 2 2 1 9
2 2 1 9