Y. Saito et al. / Tetrahedron Letters 45 (2004) 7827–7831
7831
(BPP, U = 0.035)3a and naphthopyridopyrimidine (NPP,
U = 0.096).3d These fluorescence properties of
AMPyU are favorable for the application as an
SNP typing probe. However, when BDF probes con-
taining the -CAMPyUC- sequence were used, the fluores-
cence emission was strongly quenched by the flanking C/
G base pairs. This indicates that there are some limita-
tions for the sequence to use in this method using
AMPyU-containing BDF probe.
9297;(c) Okamoto, A.;Tainaka, K.;Saito, I. Chem. Lett.
2003, 32, 684–685;(d) Okamoto, A.;Tainaka, K.;Saito, I.
Tetrahedron Lett. 2003, 44, 6871–6874;(e) Okamoto, A.;
Ichiba, T.;Saito, I. J. Am. Chem. Soc. 2004, 126, 8364–
8365;(f) Okamoto, A.;Tanaka, K.;Fukuta, T.;Saito, I.
Chem. Bio. Chem. 2004, 5, 958–963.
4. (a) Okamoto, A.;Kanatani, K.;Saito, I. J. Am. Chem. Soc.
2004, 126, 4820–4827;(b) Saito, Y.;Miyauchi, Y.;Oka-
moto, A.;Saito, I. Chem. Commun. 2004, 1704–1705.
5. Spectroscopic data for selected compounds are provided.
Compound 1: 1H NMR (pyridine-d5, 400MHz) d 2.61–2.75
(m, 2H), 2.97 (t, 2H, J = 7.6Hz), 3.49 (t, 2H, J = 7.6Hz),
4.11 (dd, 1H, J = 2.4, 11.6Hz), 4.21 (dd, 1H, J = 2.8,
11.6Hz), 4.48 (ddd, 1H, J = 2.4, 2.8, 3.4Hz), 5.02 (m, 1H),
6.93 (dd, 1H, J = 6.0, 6.4Hz), 8.00–8.40 (m, 9H), 9.23 (d,
1H, J = 9.6Hz); 13C NMR (pyridine-d5, 100MHz) d 14.7,
40.9, 41.2, 61.3, 70.6, 73.8, 85.4, 88.5, 92.1, 99.9, 124.0,
124.1, 124.6, 124.8, 125.8, 126.1, 126.3, 126.4, 126.9, 128.9,
129.2, 129.2, 130.3, 130.8, 131.8, 133.4, 143.0, 150.3, 162.6,
201.7;FABMS (Glycerol/CH 3OH), m/z 509 ([M+H]+),
HRMS calcd for C30H25O6N2 ([M+H]+) 509.1712, found
In conclusion, we have developed novel alkanoyl-
pyrene-labeled BDF nucleosides, AMPyU and MPyU.
These nucleosides show a strong fluorescence depend-
ency on solvent polarity at long wavelength. BDF
probes containing AMPyU selectively emit fluorescence
only when the base opposite BDF base is adenine. The
homogeneous SNP typing method using AMPyU-con-
taining BDF probes is a powerful alternative to conven-
tional SNP typing as well as gene detection.
1
509.1709. Compound 2: H NMR (pyridine-d5, 400MHz)
d 2.67–2.71 (m, 2H), 3.11 (t, 2H, J = 7.6Hz), 3.60 (t, 2H,
J = 7.6Hz), 4.16 (dd, 1H, J = 2.4, 11.6Hz), 4.25 (dd, 1H,
J = 2.4, 11.6Hz), 4.49 (ddd, 1H, J = 2.4, 3.2, 3.4Hz), 5.06
(m, 1H), 7.06 (dd, 1H, J = 6.4, 6.8Hz), 8.01–8.50 (m, 9H),
9.22 (d, 1H, J = 9.2Hz); 13C NMR (pyridine-d5, 100MHz)
d 23.3, 41.3, 41.6, 62.3, 71.4, 85.5, 89.0, 113.6, 124.7, 124.7,
125.3, 125.6, 126.4, 126.7, 126.9, 127.1, 127.6, 129.6, 129.7,
129.8, 130.9, 131.5, 132.9, 134.0, 137.6, 151.8, 164.8, 203.7;
FABMS (DTT/CH3OH), m/z 485 ([M+H]+), HRMS calcd
for C28H25O6N2 ([M+H]+) 485.1717, found 485.1713.
6. Shi Shun, A. L. K.;Chernick, E. T.;Eisler, S.;Tykwinski,
R. R. J. Org. Chem. 2003, 68, 1339–1347.
7. The quantum yields (U) were calculated according to the
following reference: Morris, J. V.;Mahaney, M. A.;Huber,
J. R. J. Phys. Chem. 1976, 80, 969–974.
8. Hsu, L.;Tani, K.;Fujiyoshi, T.;Kurachi, K.;Yoshida, A.
Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 3771–3775.
9. Shtivelman, E.;Lifshitz, B.;Gale, R. P.;Roe, B. A.;
Canaani, E. Cell 1986, 47, 277–284.
References and notes
1. (a) Cohen, B. E.;McAnaney, T. B.;Park, E. S.;Jan, Y. N.;
Boxer, S. G.;Jan, L. Y. Science 2002, 296, 1700–1703;(b)
Krasnowska, E. K.;Gratton, E.;Parasassi, T. Biophys. J.
1998, 74, 1984–1993.
2. (a) Kalyanasundaram, K.;Thomas, J. K. J. Phys. Chem.
1977, 81, 2176–2180;(b) Murov, S. L.;Carmichael, I.;Hug,
G. L. Handbook of Photochemistry, 2nd ed.;Marcel
Dekker: New York, 1993;(c) Armbruster, C.;Knapp, M.;
Rechthaler, K.;Schamschule, R.;Parusel, A. B. J.;Kohler,
G.;Wehrmann, W. J. Photochem. Photobiol. A: Chem.
1999, 125, 29–38;(d) Kumar, C. V.;Tolosa, L. M.
Photochem. Photobiol. A: Chem. 1994, 78, 63–69.
3. (a) Okamoto, A.;Tainaka, K.;Saito, I. J. Am. Chem. Soc.
2003, 125, 4972–4973;(b) Okamoto, A.;Tanaka, K.;
Fukuta, T.;Saito, I. J. Am. Chem. Soc. 2003, 125, 9296–
J.