S. Montersino, W.J.H. van Berkel / Biochimica et Biophysica Acta 1824 (2012) 433–442
441
[12] K.S. Ryan, A.R. Howard-Jones, M.J. Hamill, S.J. Elliott, C.T. Walsh, C.L. Drennan,
Crystallographic trapping in the rebeccamycin biosynthetic enzyme RebC, Proc.
Natl. Acad. Sci. U. S. A. 104 (2007) 15311–15316.
[13] S.J. Andersen, S. Quan, B. Gowan, E.R. Dabbs, Monooxygenase-like sequence of a
Rhodococcus equi gene conferring increased resistance to rifampin by inactivating
this antibiotic, Antimicrob. Agents Chemother. 41 (1997) 218–221.
[14] Y. Hoshino, S. Fujii, H. Shinonaga, K. Arai, F. Saito, T. Fukai, H. Satoh, Y. Miyazaki, J.
Ishikawa, Monooxygenation of rifampicin catalyzed by the rox gene product of
Nocardia farcinica: structure elucidation, gene identification and role in drug
resistance, J. Antibiot. (Tokyo) 63 (2010) 23–28.
baits, no Rhodococcus homologues were found. Recently, a 3HB6H was
described in Rhodococcus sp. NCIMB 12038 [35]. 3HB6H from R. jostii
RHA1 shares 93% amino acid sequence with 3HB6H from Rhodococcus
sp. NCIMB 12038. To our best knowledge, these are the only Rhodococcus
gentisate producing enzymes characterised thus far.
5. Conclusion
[15] G. Volkers, G.J. Palm, M.S. Weiss, G.D. Wright, W. Hinrichs, Structural basis for a
new tetracycline resistance mechanism relying on the TetX monooxygenase,
FEBS Lett. 585 (2011) 1061–1066.
[16] M.H. Eppink, H.A. Schreuder, W.J. van Berkel, Identification of a novel conserved
sequence motif in flavoprotein hydroxylases with a putative dual function in
FAD/NAD(P)H binding, Protein Sci. 6 (1997) 2454–2458.
[17] R.K. Wierenga, P. Terpstra, W.G. Hol, Prediction of the occurrence of the ADP-
binding βαβ-fold in proteins, using an amino acid sequence fingerprint, J. Mol.
Biol. 187 (1986) 101–107.
[18] G. Eggink, H. Engel, G. Vriend, P. Terpstra, B. Witholt, Rubredoxin reductase of
Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidore-
ductases based on one NAD and two FAD fingerprints, J. Mol. Biol. 212 (1990)
135–142.
[19] P. Macheroux, B. Kappes, S.E. Ealick, Flavogenomics — a genomic and structural
view on flavin-dependent proteins, FEBS J. 278 (2011) 2625–2634.
[20] S.L. Fuenmayor, M. Wild, A.L. Boyes, P.A. Williams, A gene cluster encoding steps in
conversion of naphthalene to gentisate in Pseudomonas sp. strain U2, J. Bacteriol.
180 (1998) 2522–2530.
[21] C.O. Jeon, M. Park, H.-S. Ro, W. Park, E.L. Madsen, The naphthalene catabolic (nag)
genes of Polaromonas naphthalenivorans CJ2: evolutionary implications for two gene
clusters and novel regulatory control, Appl. Environ. Microbiol. 72 (2006) 1086–1095.
[22] J.D. Thompson, D.G. Higgins, T.J. Gibson, CLUSTAL W: improving the sensitivity of pro-
gressive multiple sequence alignment through sequence weighting, position-specific
gap penalties and weight matrix choice, Nucleic Acids Res. 22 (1994) 4673–4680.
[23] U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of
bacteriophage T4, Nature 227 (1970) 680–685.
In conclusion, we have retrieved a pool of flavoprotein hydroxy-
lases in R. jostii RHA1 that share conserved flavoprotein fingerprints
but can act on diverse aromatic substrates. Furthermore, from multi-
ple sequence alignments and phylogenetic analysis, a number of
functional annotations have been resolved.
Q0SFK6 is an example of a successful functional annotation.
From biochemical analysis we obtained clear evidence that Q0SFK6
was mis-annotated as a salicylate hydroxylase, an enzyme related
to 3HB6H but with a different substrate specificity. 3HB6H is one
of the few para-hydroxylating flavoprotein monooxygenases charac-
terised. Recently, Hiromoto and coworkers [58] obtained the crystal
structure of 3-hydroxybenzoate 4-hydroxylase (3HB4H) from
Comamonas testosteroni. 3HB4H is using the same substrate as
3HB6H but performs an ortho-hydroxylation reaction. Comparison
between structure and mechanism of 3HB4H and 3HB6H might
help in understanding the striking regioselectivity of flavoprotein
aromatic hydroxylases.
Supplementary data to this article can be found online at doi:10.
1016/j.bbapap.2011.12.003.
[24] R.A. Wijnands, J. van der Zee, J.W. Van Leeuwen, W.J. van Berkel, F. Müller, The
importance of monopole–monopole and monopole–dipole interactions on the
binding of NADPH and NADPH analogues to p-hydroxybenzoate hydroxylase
from Pseudomonas fluorescens. Effects of pH and ionic strength, Eur. J. Biochem.
139 (1984) 637–644.
Acknowledgements
[25] K.A. Johnson, R.S. Goody, The original Michaelis constant: translation of the 1913
Michaelis–Menten paper, Biochemistry 50 (2011) 8264–8269.
[26] Y.J. Bollen, S.M. Nabuurs, W.J. van Berkel, C.P. van Mierlo, Last in, first out: the role
of cofactor binding in flavodoxin folding, J. Biol. Chem. 280 (2005) 7836–7844.
[27] J.A. Powell, J.A. Archer, Molecular characterisation of a Rhodococcus ohp operon,
Antonie Van Leeuwenhoek 74 (1998) 175–188.
We are grateful to Anette Riebel and Daniel Torres Pazmiño for
In-Fusion PCR Cloning System optimisation, Laura de Hoon for exper-
imental contributions and Adrie Westphal for technical assistance.
This study was supported by the Integrated Biosynthesis Organic Syn-
thesis (IBOS) project of the Netherlands Organization for Scientific
Research (NWO).
[28] B. Entsch, W.J. van Berkel, Structure and mechanism of para-hydroxybenzoate
hydroxylase, FASEB J. 9 (1995) 476–483.
[29] T.W. Giessen, F.I. Kraas, M.A. Marahiel, A four-enzyme pathway for 3,5-dihydroxy-4-
methylanthranilic acid formation and incorporation into the antitumor antibiotic
sibiromycin, Biochemistry 50 (2011) 5680–5692.
References
[30] J.I. Jimenez, A. Canales, J. Jimenez-Barbero, K. Ginalski, L. Rychlewski, J.L. Garcia, E. Diaz,
Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic
cluster from Pseudomonas putida KT2440, Proc. Natl. Acad. Sci. U. S. A. 105 (2008)
11329–11334.
[31] H. Nakano, M. Wieser, B. Hurh, T. Kawai, T. Yoshida, T. Yamane, T. Nagasawa, Purifica-
tion, characterization and gene cloning of 6-hydroxynicotinate 3-monooxygenase
from Pseudomonas fluorescens TN5, Eur. J. Biochem. 260 (1999) 120–126.
[32] N.L. Huong, K. Itoh, M. Miyamoto, K. Suyama, H. Yamamoto, Chlorophenol
hydroxylase activity encoded by TfdB from 2,4-dichlorophenoxyacetic acid
(2,4-D)-degrading Bradyrhizobium sp. strain RD5-C2, Biosci. Biotechnol. Biochem.
71 (2007) 1691–1696.
[1] M. Ahmad, J.N. Roberts, E.M. Hardiman, R. Singh, L.D. Eltis, T.D. Bugg, Identifica-
tion of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase, Biochemistry
50 (2011) 5096–5107.
[2] M.J. Larkin, L.A. Kulakov, C.C.R. Allen, Biodegradation and Rhodococcus-masters of
catabolic versatility, Curr. Opin. Biotechnol. 16 (2005) 282–290.
[3] M.J. Larkin, L.A. Kulakov, C.C.R. Allen, Biodegradation by members of the genus
Rhodococcus: biochemistry, physiology, and genetic adaptation, Adv. Appl. Microbiol.
59 (2006) 1–29.
[4] L. Martínková, B. Uhnáková, M. Pátek, J. Nesvera, V. Kren, Biodegradation potential of
the genus Rhodococcus, Environ. Int. 35 (2009) 162–177.
[5] M.P. McLeod, R.L. Warren, W.W.L. Hsiao, N. Araki, M. Myhre, C. Fernandes, D.
Miyazawa, W. Wong, A.L. Lillquist, D. Wang, M. Dosanjh, H. Hara, A. Petrescu, R.D.
Morin, G. Yang, J.M. Stott, J.E. Schein, H. Shin, D. Smailus, A.S. Siddiqui, M.A. Marra,
S.J.M. Jones, R. Holt, F.S.L. Brinkman, K. Miyauchi, M. Fukuda, J.E. Davies, W.W.
Mohn, L.D. Eltis, The complete genome of Rhodococcus sp. RHA1 provides insights
into a catabolic powerhouse, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 15582–15587.
[6] W.J.H. van Berkel, N.M. Kamerbeek, M.W. Fraaije, Flavoprotein monooxygenases,
a diverse class of oxidative biocatalysts, J. Biotechnol. 124 (2006) 670–689.
[7] R. Hammann, H.J. Kutzner, Key enzymes for the degradation of benzoate, m-and
p-hydroxybenzoate by some members of the order Actinomycetales, J. Basic
Microbiol. 38 (1998) 207–220.
[8] C.S. Harwood, R.E. Parales, The β-ketoadipate pathway and the biology of self-
identity, Annu. Rev. Microbiol. 50 (1996) 553–590.
[9] P.S. Phale, A. Basu, P.D. Majhi, J. Deveryshetty, C. Vamsee-Krishna, R. Shrivastava,
Metabolic diversity in bacterial degradation of aromatic compounds, OMICS 11
(2007) 252–279.
[10] P. Kallio, Z. Liu, P. Mantsala, J. Niemi, M. Metsa-Ketela, Sequential action of two
flavoenzymes, PgaE and PgaM, in angucycline biosynthesis: chemoenzymatic
synthesis of gaudimycin C, Chem. Biol. 15 (2008) 157–166.
[11] Y. Lindqvist, H. Koskiniemi, A. Jansson, T. Sandalova, R. Schnell, Z. Liu, P. Mäntsälä,
J. Niemi, G. Schneider, Structural basis for substrate recognition and specificity
in aklavinone-11-hydroxylase from rhodomycin biosynthesis, J. Mol. Biol. 393
(2009) 966–977.
[33] X.-H. Shen, C.-Y. Jiang, Y. Huang, Z.-P. Liu, S.-J. Liu, Functional identification
of novel genes involved in the glutathione-independent gentisate pathway in
Corynebacterium glutamicum, Appl. Environ. Microbiol. 71 (2005) 3442–3452.
[34] Y.F. Yang, J.J. Zhang, S.H. Wang, N.Y. Zhou, Purification and characterization of
the ncgl2923-encoded 3-hydroxybenzoate 6-hydroxylase from Corynebacterium
glutamicum, J. Basic Microbiol. 50 (2010) 599–604.
[35] T.T. Liu, Y. Xu, H. Liu, S. Luo, Y.J. Yin, S.J. Liu, N.Y. Zhou, Functional characterization
of a gene cluster involved in gentisate catabolism in Rhodococcus sp. strain NCIMB
12038, Appl. Microbiol. Biotechnol. 90 (2010) 671–678.
[36] Z. Holesova, M. Jakubkova, I. Zavadiakova, I. Zeman, L. Tomaska, J. Nosek, Gentisate
and 3-oxoadipate pathways in the yeast Candida parapsilosis: Identification and
functional analysis of the genes coding for 3-hydroxybenzoate 6-hydroxylase and
4-hydroxybenzoate 1-hydroxylase, Microbiology 157 (2011) 2152–2163.
[37] M.H. Eppink, S.A. Boeren, J. Vervoort, W.J. van Berkel, Purification and properties
of 4-hydroxybenzoate 1-hydroxylase (decarboxylating), a novel flavin adenine
dinucleotide-dependent monooxygenase from Candida parapsilosis CBS604,
J. Bacteriol. 179 (1997) 6680–6687.
[38] P.J. Steennis, M.M. Cordes, J.H. Hilkens, F. Muller, On the interaction of para-
hydroxybenzoate hydroxylase from Pseudomonas fluorescens with halogen ions,
FEBS Lett. 36 (1973) 177–180.
[39] W.J. van Berkel, W.J. van den Tweel, Purification and characterisation of 3-
hydroxyphenylacetate 6-hydroxylase: a novel FAD-dependent monooxygenase
from a Flavobacterium species, Eur. J. Biochem. 201 (1991) 585–592.