´
´
J. Kaizer, J. Pap, G. Speier, L. Parkanyi
FULL PAPER
[13]
[14]
[15]
T. Oka, F. J. Simpson, H. G. Krishnamurty, Can. J. Microbiol.
1972, 18, 493.
I. Bauer, A. de Beyer, B. Tshisuaka, S. Fetzner, F. Lingens,
FEMS Microbiol. Lett. 1994, 117, 299.
I. Bauer, N. Max, S. Fetzner, F. Lingens, Eur. J. Biochem. 1996,
240, 576.
J. W. Wray, R. H. Abeles, J. Biol. Chem. 1993, 268, 24785.
J. W. Wray, R. H. Abeles, J. Biol. Chem. 1995, 270, 3147.
T. Matsuura, Tetrahedron 1977, 33, 2869.
T. Oka, F. J. Simpson, J. J. Child, S. C. Mills, Can. J. Microbiol.
1971, 17, 111.
T. Oka, H. G. Krishnamurty, F. J. Simpson, Can. J. Microbiol.
1972, 18, 893.
F. Fusetti, K. H. Schröter, R. A. Steiner, P. I. van Noort, T.
Pijning, H. J. Rozeboom, K. H. Kalk, M. R. Egmond, B. W.
Dijkstra, Structure 2002, 10, 259.
eventual diffusion control effects. The dioxygen concentration was
calculated from literature data (as 6.96 ϫ 10Ϫ3 )[55] taking into
account the partial pressure of DMF,[56] and assuming the validity
of Dalton’s law.
X-ray Crystallographic Studies: Intensity data were collected on an
EnrafϪNonius CAD4 diffractometer (graphite monochromator;
[16]
[17]
[18]
[19]
˚
Mo-Kα radiation, λ ϭ 0.71073 A) at 293(2) K using ω/2θ scans.
The intensities of three standard reflections were monitored regu-
larly (every 60 min). Psi-scan absorption corrections were applied
to the data.[57]
[20]
[21]
The structures were solved by direct methods (and subsequent dif-
ference syntheses),[58] and refined by anisotropic full-matrix least-
squares on F2 for all non-hydrogen atoms.[59] Hydrogen atomic po-
sitions were calculated from assumed geometries. Hydrogen atoms
were included in structure factor calculations but they were not
refined. The isotropic displacement parameters of the hydrogen
atoms were approximated from the Ueq value of the atom to which
they were bonded. Crystal data, data collection, and refinement
[22]
[23]
C. W. Jefford, P. A. Cadby, Prog. Chem. Nat. Prod. 1981, 40,
191.
Catalytic Activation of Dioxygen by Metal Complexes; Cataly-
´
sis by Metal Complexes Series, (Ed.: Simandi, L. I.), Kluwer
Academic Publishers, Dordrecht, 1992, vol. 13, 185.
Ϫ
details are shown in Table 1. The ClO4 anions are disordered in
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
´
´
G. Speier, V. Fülöp, L. Parkanyi, J. Chem. Soc., Chem. Com-
all three structures. In 11 the perchlorate O1c atom is ordered and
the remaining three oxygens split into seven partially occupied posi-
tions. The sum of these occupation factors were bound to give
three. The high maximum and mean shift/esd is due to the site
occupation factor of O3c. In 12 (Figure 3) only one perchlorate
oxygen atom splits but the O10···C18 (PhϪCOO) moiety is, how-
ever, disordered with 2/3:1/3 occupancies. For the presentation of
the molecular structures, the molecular graphics program
PLATON was used.[60]
mun. 1990, 512.
´
E. Balogh-Hergovich, G. Speier, G. Argay, J. Chem. Soc.,
Chem. Commun. 1991, 551.
´
E. Balogh-Hergovich, J. Kaizer, G. Speier, Inorg. Chim. Acta
1997, 256, 9.
I. Lippai, G. Speier, G. Huttner, L. Zsolnai, Chem. Commun.
1997, 741.
´
´
E. Balogh-Hergovich, J. Kaizer, G. Speier, G. Argay, L. Park-
´
anyi, J. Chem. Soc., Dalton Trans. 1999, 3847.
´
´
E. Balogh-Hergovich, J. Kaizer, G. Speier, V. Fülöp, L. Park-
CCDC-201803 (for 9), -201804 (for 11), and -201805 (for 12) con-
tain the supplementary crystallographic data for this paper. These
data can be obtained free of charge at ww.ccdc.cam.ac.uk/conts/
retrieving.html or from Cambridge Crystallographic Data Center,
12, Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.)
ϩ44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].
´
anyi, Inorg. Chem. 1999, 38, 3787.
´
E. Balogh-Hergovich, J. Kaizer, G. Speier, G. Huttner, L. Zsol-
nai, Inorg. Chim. Acta 2000, 304, 72.
´
E. Balogh-Hergovich, J. Kaizer, G. Speier, G. Huttner, A. Ja-
cobi, Inorg. Chem. 2000, 39, 4224.
´
E. Balogh-Hergovich, J. Kaizer, G. Speier, J. Mol. Catal. A:
Chem. 2000, 159, 215.
[33]
[34]
´
L. Barhacs, J. Kaizer, G. Speier, J. Org. Chem. 2000, 65, 3449.
´
L. Barhacs, J. Kaizer, G. Speier, J. Mol. Catal. A: Chem. 2001,
Acknowledgments
We thank the Hungarian Research Fund (OTKA T-030400 and
T-043414) for financial support.
172, 117.
[35]
[36]
[37]
[38]
[39]
´
´
J. Kaizer, J. Pap, G. Speier, L. Parkanyi, L. Korecz, A. Rocken-
bauer, J. Inorg. Biochem. 2002, 91, 190.
´
L. Barhacs, J. Kaizer, J. Pap, G. Speier, Inorg. Chim. Acta 2001,
320, 83.
´
E. Balogh-Hergovich, J. Kaizer, J. Pap, G. Speier, G. Huttner,
[1]
B. G. Fox, J. D. Lipscomb in Biological Oxidation Systems
L. Zsolnai, Eur. J. Inorg. Chem. 2002, 2287.
R. A. Steiner, K. H. Kalk, B. W. Dijkstra, Proc. Nat. Acad.
Sci. 2002, 99, 16625.
E. Makasheva, N. T. Golovkina, Zh. Obsch. Khim. 1973, 43,
1640.
(Eds.: C. Reddy, G. A. Hamilton), Academic Press, New York,
1990, p. 367.
[2]
Bioinorganic Chemistry of Copper (Eds.: K. D. Karlin, Z. Tyek-
´
lar), Chapman & Hall, New York, 1992.
[3]
E. I. Solomon, M. J. Baldwin, M. D. Lowery, Chem. Rev. 1992,
[40]
[41]
[42]
M. Thomson, C. R. Williams, Anal. Chim. Acta 1976, 85, 375.
K. Takamura, M. Ito, Chem. Pharm. Bull. 1977, 25, 3218.
I. Lippai, G. Speier, L. Zsolnai, G. Huttner, Acta Crystallogr.,
Sect. C 1997, 53, 1547.
92, 521.
[4]
[5]
K. D. Karlin, Science 1993, 261, 701.
Catalysis by Metal Complexes, Oxygenases and Model Systems
(Ed.: T. Funabiki), Kluwer Academic Press, Dordrecht, The
Netherlands, 1997.
[43]
´
E. Balogh-Hergovich, J. Kaizer, G. Speier, J. Mol. Catal. A:
[6]
[7]
Chem. 2003, 206, 83.
S. Hattori, I. Noguchi, Nature 1959, 184, 1145.
H. K. Hund, J. Breuer, F. Lingens, J. Hüttermann, R. Kappl,
S. Fetzner, Eur. J. Biochem. 1999, 263, 871.
W. Barz, Arch. Mikrobiol. 1971, 78, 341.
D. W. S. Westlake, G. Talbot, E. R. Blakley, F. J. Simpson, Can.
J. Microbiol. 1959, 5, 621.
D. W. S. Westlake, J. M. Roxburgh, G. Talbot, Nature 1961,
189, 510.
T. Oka, F. J. Simpson, J. Biochem. Biophys. Res. Commun.
1971, 43, 1.
H. G. Krishnamurty, F. J. Simpson, J. Biol. Chem. 1970, 245,
1467.
[44]
[45]
W. B. Tolman, Acc. Chem. Res. 1997, 30, 227.
S. Mahapatra, J. A. Halfen, E. C. Wilkinson, L. Que Jr., W. B.
Tolman, J. Am. Chem. Soc. 1994, 116, 9785.
J. A. Halfen, S. Mahapatra, E. C. Wilkinson, S. Kaderli, V. G.
Young Jr., L. Que Jr., A. Zuberbühler, W. B. Tolman, Science
1996, 271, 1397.
S. Mahapatra, J. A. Halfen, E. C. Wilkinson, G. Pan, X. Wang,
V. G. Young Jr., C. J. Cramer, L. Que Jr., W. B. Tolman, J. Am.
Chem. Soc. 1996, 118, 11555.
[8]
[9]
[46]
[47]
[48]
[10]
[11]
[12]
L. M. Bellamy, in Ultrarot-Spectrum und Chemische Konstitu-
tion, Dr. Dietrich Steinkopff Verlag, Darmstadt, 1966, 12.
2258
2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2004, 2253Ϫ2259