M. Fujita et al. / Tetrahedron Letters 45 (2004) 8023–8026
8025
Supplementary data
Supplementary data associated with this article can be
Scheme 4. Trapping of alkylideneallyl cation by methanol.
References and notes
1. For reviews, see: (a) Binger, P.; Buch, H. M. Top. Curr.
¨
(entries 1and 2) although the reaction at the lower
temperature provided more 5 (50). Thus, the selective
nucleophilic reaction at the sp position is more pro-
nounced at lower temperature, and with SnCl4 com-
pared with TiCl4. These tendencies are common to the
reactions of 3a and 3b, but the monomethyl substrate
3b yielded more 6 than did 3a. The positive charge is
localized mainly at the sp and sp2 carbons of the allylic
cation I02, and the methyl group(s) on I02 will stabilize the
positive charge at the sp2 position; consequently, the
dimethyl substituted species (I02a) may be expected to
lead to more 6 than its monomethyl substituted ana-
logue (I02b).16,19 However, a smaller amount of the sp2
substituted product 6 was obtained in the reaction of
dimethyl substrate 3a. This unexpected selectivity can-
not be explained by the charge distributions of allylic
cations I02a and I02b.
Chem. 1987, 135, 77–151; (b) Brandi, A.; Goti, A. Chem.
Rev. 1998, 98, 589–635; (c) Yamago, S.; Nakamura, E. In
Organic Reactions; Overman, L. E., Ed.; John Wiley &
Sons: Hoboken, 2002; Vol. 61, Chapter 1; (d) Brandi, A.;
Cicchi, S.; Cordero, F. M.; Goti, A. Chem. Rev. 2003, 103,
1213–1269.
2. (a) Newman, M. S.; Fraunfelder, G. M. J. Org. Chem.
1974, 39, 251–252; (b) Newman, M. S.; Zwan, M. C. V. J.
Org. Chem. 1974, 39, 1186–1189.
3. For recent examples, see: (a) Siriwardana, A. I.; Nakam-
ura, I.; Yamamoto, Y. Tetrahedron Lett. 2003, 44, 985–
987; (b) Huang, J.-W.; Shi, M. Tetrahedron 2004, 60,
2057–2062.
4. (a) Chen, Y.; Shi, M. J. Org. Chem. 2004, 69, 426–431; (b)
Shi, M.; Xu, B.; Huang, J.-W. Org. Lett. 2004, 6, 1175–
1178; (c) Xu, B.; Shi, M. Org. Lett. 2003, 5, 1415–1418; (d)
Shi, M.; Shao, L.-X.; Xu, B. Org. Lett. 2003, 5, 579–582;
(e) Shi, M.; Xu, B. Tetrahedron Lett. 2003, 44, 3839–3842;
(f) Huang, J.-W.; Shi, M. Tetrahedron Lett. 2003, 44,
9343–9347; (g) Shi, M.; Chen, Y.; Xu, B.; Tang, J.
Tetrahedron Lett. 2002, 43, 8019–8024; (h) Shi, M.; Xu, B.
Org. Lett. 2002, 4, 2145–2148.
5. (a) Patient, L.; Berry, M. B.; Kilburn, J. D. Tetrahedron
Lett. 2003, 44, 1015–1017; (b) Nakamura, I.; Kamada, M.;
Yamamoto, Y. Tetrahedron Lett. 2004, 45, 2903–
2906.
6. For recent examples, see: (a) Tsukada, N.; Shibuya, A.;
Nakamura, I.; Yamamoto, Y. J. Am. Chem. Soc. 1997,
119, 8123–8124; (b) Bessmertnykh, A. G.; Grishin, Y. K.;
Donskaya, N. A.; Tveritinova, E. V.; YurÕeva, N. M.;
Beletskaya, I. P. J. Org. Chem. 1997, 62, 6069–6076; (c)
Nakamura, I.; Itagaki, H.; Yamamoto, Y. J. Org. Chem.
1998, 63, 6458–6459; (d) Camacho, D. H.; Nakamura, I.;
Saito, S.; Yamamoto, Y. Angew. Chem., Int. Ed. 1999, 38,
3365–3367; (e) Nakamura, I.; Saito, S.; Yamamoto, Y. J.
Am. Chem. Soc. 2000, 122, 2661–2662; (f) Suginome, Y.
M.; Matsuda, T.; Ito, Y. J. Am. Chem. Soc. 2000, 122,
11015–11016; (g) Nakamura, I.; Oh, B. H.; Saito, S.;
Yamamoto, Y. Angew. Chem., Int. Ed. 2001, 40, 1298–
1300; (h) Camacho, D. H.; Nakamura, I.; Saito, S.;
Yamamoto, Y. J. Org. Chem. 2001, 66, 270–275; (i)
Tantillo, D.; Carpenter, B. K.; Hoffmann, R. Organome-
tallics 2001, 20, 4562–4564; (j) Nishihara, Y.; Yoda, C.;
Osakada, K. Organometallics 2001, 20, 2124–2126; (k)
Kim, S.; Takeuchi, D.; Osakada, K. J. Am. Chem. Soc.
2002, 124, 762–763; (l) Nakamura, I.; Siriwardana, A. I.;
Saito, S.; Yamamoto, Y. J. Org. Chem. 2002, 67,
3445–3449; (m) Itazaki, M.; Nishihara, Y.; Osakada, K.
J. Org. Chem. 2002, 67, 6889–6895; (n) Ma, S.; Zhang, J.
Angew. Chem., Int. Ed. 2003, 42, 184–187; (o) Siriwardana,
A. I.; Nakamura, I.; Yamamoto, Y. Tetrahedon
Lett. 2003, 44, 4547–4550; (p) Siriwardana, A. I.;
Nakamura, I.; Yamamoto, Y. J. Org. Chem. 2004, 69,
3202–3204.
Although the major reaction of 3 with anhydrous HCl in
an aprotic solvent was the olefinic protonation leading
to the C1–C2 cleavage, the C2–C3 cleavage can also
be induced by HCl in a protic solvent. The reaction of
3a in methanol containing HCl (0.4M) at ambient tem-
perature gave 10 in 80% yield in 5min (Scheme 4). When
the reaction was carried out in CD3OD, deuterium was
incorporated at the vinylic position of 10, and 10 con-
tained the labeled methoxy CD3O group. This is consist-
ent with
a
reaction mechanism involving the
nucleophilic addition of methanol to I02a formed by the
proton-induced silyloxide elimination.20 The original
methoxy group must be removed during acid-induced
cleavage of the initially formed enol ether product.21
The selective nucleophilic addition at the sp2 position of
I02a agrees with the charge distribution of I02a,16,19 but is
in contrast to the chloride addition in the Lewis-acid-
mediated reaction.
In summary, alkylidenecyclopropanone silyl acetals
have been prepared for the first time, and the silyl acetal
functional group plays an important role in controlling
the regioselective cleavage of the three different C–C
bonds of the cyclopropane ring of 3. Compound 3 is a
good precursor of the alkylideneallyl cation.
Acknowledgments
We are very grateful to Professor Howard Maskill
(Newcastle upon Tyne) for reading the manuscript and
invaluable comments. This work is partially supported
by KAKENHI, and M.F. acknowledges financial sup-
port from JCCF Award in Synthetic Organic Chemistry,
Japan.
7. (a) Yamago, S.; Nakamura, E. J. Am. Chem. Soc. 1989,
111, 7285–7286; (b) Nakamura, E.; Yamago, S.
Acc. Chem. Res. 2002, 35, 867–877, and references cited
therein.