8076
A. A.-M. Abdel-Aziz et al. / Tetrahedron Letters 45 (2004) 8073–8077
+
-
Ba(OH) . 8H O
Na C H
8
2
2
10
TsCl (1.2 eq.)
NaH (2 eq.)
THF, rt, 4 h
°
EtOH, H O
2
THF, -79
30 min.
C
°
140 C, 3 d
TsN NH
TsHN NHTs
TsHN NH
H N NH
2
(73%)
(75%)
(91%)
2
2
O
12
21
22
3
+
-
Ba(OH) . 8H O
Na C H
8
2
2
10
TsCl (1.2 eq.)
NaH (2 eq.)
THF, rt, 4 h
EtOH, H O
2
°
THF, -79
30 min.
(87%)
C
°
140 C, 3 d
TsN NH
H N NH
2
TsHN NH
TsHN NHTs
(68%)
(77%)
2
2
O
15
4
24
23
Scheme 4. Hydrolytic pathway to the vicinal diamines.
Soc. 1992, 114, 7938; (c) Catalytic Asymmetric Synthesis;
Jacobsen, E. J., Ed.; VCH: Ojima, 1993; p 159; (d)
Katsuki, T. J. Mol. Catal. 1996, 113, 87; (e) Mukaiyama,
T. Aldrichim. Acta 1996, 29, 59; (f) Trost, B. M.; Van
Vrancken, D. L. Chem. Rev. 1996, 96, 395.
in structures (Fig. 2). The strategy of overlay fit
was to match two imidazolidinone rings and examine
any spatial differences between the atoms of the tert-
butyl and 1-adamantyl groups. The results showed
that atoms of the tosyl groups occupy slightly different
spatial positions relative to the plane of the 2-imidazo-
lidinones and closely match the tert-butyl and 1-ada-
4. As aldehyde protection see: Alexakis, A.; Mangeney, P. In
Advanced Asymmetric Synthesis; Stephenson, G. R., Ed.;
Chapman & Hall, 1996; p 93.
˚
mantyl groups with RMS values 0.01A (Fig. 2). An
5. For the diamine 1: (a) Pini, D.; Iuliano, A.; Rosini, C.;
Salvadori, P. Synthesis 1990, 1023; (b) Oi, R.; Sharpless,
K. B. Tetrahedron Lett. 1991, 32, 999; (c) Shimizu, M.;
Fujisawa, T. Tetrahedron Lett. 1995, 36, 8607; For the
diamine 2 see: (a) Wieland, A.; Schlichtung, O.; Langs-
dorf, W. V. Z. Phys. Chem. 1926, 161, 74; (b) Swift, G.;
Swern, D. J. Org. Chem. 1967, 32, 511; (c) Whitney, T. A.
J. Org. Chem. 1980, 45, 4214.
6. Addition to imines see: (a) Tom, D. H.; Dietrich, J. Chem.
Ber. 1984, 117, 694; (b) Neumann, W. L.; Rogic, M. M.;
Dunn, T. J. Tetrahedron Lett. 1991, 32, 5865; (c) Alvaro,
J.; Grepioni, F.; Savoia, D. J. Org. Chem. 1997, 62, 4180;
(d) Bambridge, K.; Begley, M. J.; Simpkins, N. S.
Tetrahedron Lett. 1994, 35, 3391.
electrostatic isopotential isosurface was carried out
for the lowest energy conformers of SS-16a and
SS-16b, respectively, to examine the similarity in
electronic and conformational properties. Figure 3
presents the electrostatic potentials (ESP) mapped on
the isosurface of SS-16a and SS-16b, pink colors
indicate negative ESP regions and green colors indicate
positive ESP regions. Comparison of the ESP of SS-16a
with SS-16b shows their electronic similarity and
steric crowding of the aliphatic cage-like core of the
1-adamantyl moiety compared with that of tert-butyl
group.
7. Coupling of nitriles see: Roskamp, E. J.; Pedersen, S. F. J.
Am. Chem. Soc. 1987, 109, 3152.
In conclusion, we have successfully developed an effi-
cient synthesis of 1,2-diamino-1,2-di-tert-butylethane
and of 1,2-diamino-1,2-di-(1-adamantyl)ethane from
trans-4,5-dimethoxy-2-imidazolidinones by optical reso-
lution using apocamphanecarbonyl chloride (MAC-Cl)
or catalytic resolution using an oxazaborolidine. Subse-
quent stereospecific and stepwise substitution of dimeth-
oxyl groups using tert-butyl or 1-adamantyl cuprates
and then ring cleavage using 30equiv of Ba(OH)2Æ8H2O
to provide chiral 1,2-di-tert-butyl and 1,2-di-(1-adamant-
yl)ethylenediamines, which represent potential precur-
sors for biologically active platinum and palladium
complexes.1a
8. (a) Katahira, T.; Ishizuka, T.; Matsunaga, H.; Kunieda, T.
Tetrahedron Lett. 2001, 42, 6319; (b) Seo, R.; Ishizuka, T.;
Abdel-Aziz, A. A.-M.; Kunieda, T. Tetrahedron Lett.
2001, 42, 6353; (c) Abdel-Aziz, A. A.-M.; Matsunaga, H.;
Kunieda, T. Tetrahedron Lett. 2001, 42, 6565, and
references cited therein.
9. Umezawa, H.; Aoyagi, T.; Morishima, H.; Matsuzaki, M.;
Hamada, M.; Takeuchi, T. J. Antibiot. 1970, 23, 259.
10. Aoyagi, T.; Tobe, H.; Kojima, F.; Hamada, M.; Takeuchi,
T.; Umezawa, H. J. Antibiot. 1978, 31, 636.
11. Wang, P. C. Heterocycles 1985, 23, 3041.
12. (a) Ishizuka, T.; Kimura, K.; Ishibuchi, S.; Kunieda, T.
Chem. Pharm. Bull. 1990, 38, 1717; (b) Ishizuka, T.;
Kimura, K.; Ishibuchi, S.; Kunieda, T. Chem. Lett. 1992,
991; (c) Abdel-Aziz, A. A.-M.; Okuno, J.; Tanaka, S.;
Ishizuka, T.; Matsunaga, H.; Kunieda, T. Tetrahedron
Lett. 2000, 41, 8533, and references cited therein.
References and notes
13. Compound (S,S)-22: (75%), mp 193–194°C (hexane/CH2-
24
1. (a) Lueet, D.; Gall, T. L.; Mioskowski, C. Angew. Chem.,
Int. Ed. 1998, 37, 2580; (b) Imagawa, K.; Hata, E.;
Yamada, T.; Mukaiyama, T. Chem. Lett. 1996, 291; (c)
Bruncko, M.; Khuong, T.-A. V.; Sharpless, K. B. Angew.
Chem., Int. Ed. 1996, 35, 454.
2. For a review, see: Bennani, Y. L.; Hanessian, S. Chem.
Rev. 1997, 97, 3161.
3. As bidentate ligand see: (a) Tomioka, K. Synthesis 1990,
541; (b) Corey, E. J.; Sarshar, S.; Bordner, J. J. Am. Chem.
Cl2); ½aꢁD ꢀ40.7 (c 1.00, CH2Cl2); 1H NMR(CDCl
,
3
500MHz): d 7.72–7.70 (d, 4H, J = 8.5Hz), 7.29–7.27 (d,
4H, J = 8.5Hz), 4.46–4.44 (d, 2H, J = 7.9Hz, NH
exchangeable with D2O), 3.63–3.61 (d, 2H, J = 7.9Hz),
2.43 (s, 6H), 0.85 (s, 18H); Anal. C24H36N2O4S2: calcd
CHN: 59.97, 7.55, 5.83, found CHN: 60.00, 7.58, 5.86.
Compound (R,R)-24: (77%), mp 210–211°C (hexane/CH2-
28
Cl2); ½aꢁD ꢀ9.5 (c 1.00, CH2Cl2); 1H NMR(CDCl
,
3
500MHz): d 7.77–7.76 (d, 4H, J = 8.6Hz), 7.23–7.22 (d,