Glutathione-S-Transferase Inhibitors
Journal of Medicinal Chemistry, 2005, Vol. 48, No. 19 6089
(10) Mosow, J. A.; Fairchild, R. R.; Madden, M. J.; Ranson, D. T.;
Wieand, H. S.; O’Brien, E. E.; Poplack, D. J.; Cossman, J.; Myers,
C. E.; Cowan, K. H. Expression of anionic glutathione S-
transferase and P-glycoprotein genes in human tissues and
tumors. Cancer Res. 1989, 49, 1422-1428.
(11) Hayes, J. D.; Pulford, D. J. The glutathione S-transferase
supergene family: regulation of GST and the contribution of the
isozymes to cancer chemoprotection and drug resistance. Crit.
Rev. Biochem. Mol. Biol. 1995, 30, 445-600.
(12) (a) Reinemer, P.; Dirr, H. W.; Ladenstein, R.; Scha¨ffer, J.; Gallay,
O.; Huber, R. The three-dimensional structure of class π glu-
tathione S-transferase in complex with glutathione sulfonate at
2.3 Å resolution. EMBO J. 1991, 10, 1997-2005. (b) Dirr, H.
W.; Mann, K.; Huber, R.; Ladenstein, R.; Reinemer, P. Class pi
glutathione S-transferase from pig lung. Purification, biochemi-
cal characterization, primary structure and crystallization. Eur
J Biochem. 1991, 196, 693-698. (c) Kauvar S. H.; Tew K. D.
Importance of glutathione and associated enzymes in drug
response. Oncol. Res. 1997, 9, 295-302.
Nishimura, K.; Ishikawa, T.; Ruike, K.; Sato, K.; Tsuda, H.; Ito,
N. Changes in molecular forms of rat hepatic glutathione
S-transferase during chemical hepatocarcinogenesis. Cancer Res.
1984, 44, 2698-2703. (c) Henderson, C. J.; McLaren, A. W.;
Moffat, G. J.; Bacon, E. J.; Wolf, C. R. Pi-class glutathione
S-transferase: regulation and function. Chemico-Biol. Interact.
1998, 111-112, 69-82. (d) Henderson, C. J.; Smith, A. G.; Ure,
J.; Brown, K.; Bacon, E. J.; Wolf, C. R. Increased skin tumori-
genesis in mice lacking pi class glutathione S-transferases. Proc.
Natl. Acad. Sci. U S A. 1998, 95, 5275-5280. (e) Jernstro¨m, B.;
Dock, L.; Hall, M.; Mannervik, B.; Tahir, M. K.; Grover, P. L.
Glutathione transferase catalyzed conjugation of benzo[a]pyrene
7,8-diol 9, 10-epoxide with glutathione in human skin. Chemico-
Biol. Interact. 1989, 70, 173-180.
(21) (a) PDB: Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.;
Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The
Protein Data Bank. Nucleic Acids Res. 2000, 28, 235-242 (b)
See Supporting Information for a complete code list of the 45
GST human isoform models found into the PDB.
(13) (a) Lyttle, M. H.; Hocker, M. D.; Hui, H. C.; Caldwell, C. G.;
Aaron, D. T.; Engqvist-Goldstein, A.; Flatgaard, J. E.; Bauer,
K. E. Isozyme-specific glutathione-S-transferase inhibitors: de-
sign and synthesis. J. Med. Chem. 1994, 37, 189-194. (b)
Satyam, A.; Hocker, M. D.; Kane-Maguire, K. A.; Morgan, A. S.;
Villar, H. O.; Lyttle, M. H. Design, synthesis, and evaluation of
latent alkylating agents activated by glutathione S-transferase.
J. Med. Chem. 1996, 39, 1736-1747. (c) Ciaccio, P. J.; Shen, H.;
Kruh, G. D.; Tew, K. D. Effects of Chronic Ethacrynic Acid
Exposure on Glutathione Conjugation and MRP Expression in
Human Colon Tumor Cells. Biochem. Biophys. Res. Commun.
1996, 222, 111-115. (d) Townsend D. M.; Tew, K. D. The role of
glutathione S-transferase in anti-cancer drug resistance Onco-
gene 2003, 22, 7369-7375. (e) Laidler, K. J. A Glossary of Terms
used in Chemical Kinetics Including Reaction Dynamics. Pure
Appl. Chem. 1996, 68, 149-192.
(14) (a) Clapper, M. L.; Hoffman, S. J.; Tew, K. D. Glutathione
S-transferases in normal and malignant human colon tissue.
Biochim Biophys Acta 1991, 1096, 209-216. (b) Oakley, A. J.;
Lo Bello, M.; Mazzetti, A. P.; Federici, G.; Parker, M. W. The
glutathione conjugate of ethacrynic acid can bind to human pi
class glutathione transferase P1-1 in two different modes. FEBS
Lett. 1997, 419, 32-36. (c) Mulder, T. P.; Peters, W. H.; Wobbes,
T.; Witteman, B. J.; Jansen, J. B. Measurement of glutathione
S-transferase P1-1 in plasma: pitfalls and significance of
screening and follow-up of patients with gastrointestinal carci-
noma. Cancer 1997, 80, 873-880.
(15) (a) Schultz, M.; Dutta, S.; Tew, K. D. Inhibitors of glutathione
S-transferases as therapeutic agents. Adv. Drug Delivery Rev.
1997, 26, 91-104. (b) O’Brien, M. L.; Tew, K. D. Glutathione
and related enzymes in multidrug resistance. Eur. J. Cancer
Part A 1996, 32, 967-978.
(16) Adang, A. E.; Brussee, J.; van der Gen, A.; Mulder, G. J. The
glutathione-binding site in glutathione-S-transferases. Investi-
gation of the cysteinyl, glycyl and gamma-glutamyl domains.
Biochem J. 1990, 269, 47-54.
(17) Flatgaard, J. E. F.; Bauer, K. E.; Kauvar, L. M. Isozyme
specificity of novel glutathione-S-transferase inhibitors. Cancer
Chemother. Pharmacol. 1993, 33, 63-70.
(18) (a) Morgan, A. S.; Ciaccio, P. J.; Tew, K. D.; Kawar, L. M.
Isozyme-specific,glutathione-S-transferase inhibitors potentiate
drug sensitivity in cultured human cell lines. Cancer Chemother.
Pharmacol. 1996, 37, 363-370. (b) Ciaccio, P. J.; Shen, H.;
Jaiswal, A. K.; Lyttle, M. H.; Tew, K. D. Modulation of detoxi-
fication gene expression in colon HT29 cells by glutathione-S-
transferase inhibitors. Mol. Pharmacol. 1995, 48, 639-647.
(19) (a) Ji, X.; Johnson, W. W.; Sesay, M. A.; Dickert, L.; Prasad, S.
M.; Ammon, H. L.; Armstrong, R. N.; Gilliland, G. L. Structure
and function of the xenobiotic substrate binding site of a
glutathione S-transferase as revealed by X-ray crystallographic
analysis of product complexes with the diastereomers of 9-(S-
glutathionyl)-10-hydroxy-9,10-dihydrophenanthrene. Biochem-
istry 1994 33, 1043-1052. (b) Zhang, X. X.; Chakrabarti, S.;
Malick, M. A.; Richer, C. L. Cytogenotoxicity of N-acetyl-S-
(1/2-phenyl-2-hydroxyethyl)-cysteine (NAPEC) in cultured hu-
man blood lymphocytes. Cytogenotoxicity of N-acetyl-S-(1/2-
phenyl-2-hydroxyethyl)-cysteine (NAPEC) in cultured human
blood lymphocytes. Mutat. Res. 1993, 319, 121-127.
(22) Oakley, A. J.; Lo Bello, M.; Battistoni, A.; Ricci, G.; Rossjohn,
J.; Villar, H. O.; Parker, M. W. The structures of human
glutathione transferase P1-1 in complex with glutathione and
various inhibitors at high resolution. J Mol Biol. 1997, 274, 84-
100
(23) Goodford, P. J. A Computational Procedure for Determining
Energetically Favorable Binding Sites on Biologically Important
Macromolecules. J. Med. Chem. 1985, 28, 849-857.
(24) (a) Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Chio,
C.; Alagona, G.; Profeta, S.; Weiner, P. A New Force Field for
Molecular Mechanical Simulation of Nucleic Acids and Proteins.
J. Am. Chem. Soc. 1984, 106, 765-784. (b) Weiner, S. J.;
Kollman, P. A.; Case, D. A. An All-Atom Force Field for
Simulations of Proteins and Nucleic Acids. J. Comput. Chem.
1986, 7, 230-252.
(25) Hasel, W.; Hendrickson, T. F.; Still, W. C., A Rapid Approxima-
tion to the Solvent Accessible Surface Areas of Atoms. Tetrahe-
dron Comput. Methodol. 1988, 1, 103-116.
(26) Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.;
Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W.
C., MacroModel-An Integrated Software System for Modeling
Organic and Bioorganic Molecules using Molecular Mechanics.
J. Comput. Chem. 1990, 11, 440-467.
(27) (a) Alcaro, S.; Arena, A.; Neri, S.; Ottana, R.; Ortuso, F.; Pavone,
B.; Vigorita, M. G. Design and synthesis of DNA-intercalating
9-fluoren-aˆ-O-glycosides as potential IFN-inducers, and antiviral
and cytostatic agents. Bioorg., Med. Chem. 2004, 12, 1781-1791.
(b) Alcaro, S.; Arena, A.; Di Bella, R.; Neri, S.; Ottana`, R.; Ortuso,
F.; Pavone, B.; Vigorita, M. G. 9-Fluorenon-4-carboxamides:
synthesis, conformational analysis, anti-HSV-2, and immuno-
modulatory evaluation. Note II. ARKIVOC 2004, (v) 334-348.
(c) Alcaro, S.; Arena, A.; Di Bella, R.; Neri, S.; Ottana`, R.; Ortuso,
F.; Pavone, B.; Trincone, A.; Vigorita, M. G. Biocatalysed
synthesis of â-O-glucosides from 9-fluorenon-2-carbohydroxyes-
ters. Part 3: IFN-inducing and anti-HSV-2 properties. Bioorg.,
Med. Chem. 2005, 13, 3371-3378.
(28) Alcaro, S.; Gasparrini, F.; Incani, O.; Mecucci, S.; Misiti, D.;
Pierini, M.; Villani, C. A Quasi-Flexible Automatic Docking
Processing for Studying Stereoselective Recognition Mecha-
nisms. Part I. Protocol Validation. J. Comput. Chem. 2000, 21,
515-530.
(29) Before the RMSd comparison the crystallographic model was
submitted to a constrained energy minimisation in the same of
1-4 GST starting geometries.
(30) Cundari, S.; Dalpozzo, R.; De Nino, A.; Procopio, A.; Sindona,
G.; Athanassopulos, K. A Facile One-Pot Synthesis of Very
Useful Building Blocks N-Boc-S-alkylated cysteines. Tetrahedron
1999, 55, 10155-10162.
(31) (a) Chen, S. T.; Wang, K. T. Phase-transfer reagents as C-
terminal protecting groups; facile incorporation of free amino
acids or peptides into peptide sequences. J. Chem. Soc., Chem.
Commun. 1990, 1045-1047. (b) Abdel-Magid, A. F.; Cohen, J.
H.; Maryanoff, C. A.; Shah, R. D.; Villani, F. J.; Zhang, F.
Hydrolysis of Polipeptide Esters with Tetrabutylammonium
Hydroxide. Tetrahedron Lett. 1998, 39, 3391-3394.
(32) Wang, M. L.; Yang, C. Y. Reaction Mechanism of Phase-Transfer
catalysis Initiated by Hydroxide Ion: Effect of Alkalinity.
Tetrahedron 1999, 55, 6275-6288.
(33) Habig, W. H. and Jakoby, W. B. Glutathione S-transferases (rat
and human). Methods Enzymol. 1981, 77, 398-405.
(20) (a) Kitahara, A.; Yamazaki. T.; Ishikawa. T.; Camba, E. A.; Sato,
K. Changes in activities of glutathione peroxidase and glu-
tathione reductase during chemical hepatocarcinogenesis in the
rat. Gann 1983, 74, 649-655. (b) Kitahara, A.; Satoh, K.;
JM0504609