ACS Catalysis
Research Article
Ohtake, T.; Terao, J.; Tsuji, Y. Ruthenium-Catalyzed Ring-Closing
Metathesis Accelerated by Long-Range Steric Effect. Chem. Commun.
2011, 47, 9699−9701.
Isomerization-Active Ruthenium Nanoparticles. ChemCatChem 2016,
8, 2446−2449.
(34) de Espinosa, L. M.; Meier, M. A. R., In Organometallics and
Renewables, Meier, M. A. R.; Weckhuysen, B. M.; Bruijnincx, P. C. A.,
Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; pp 1−44.
(35) Bilel, H.; Hamdi, N.; Zagrouba, F.; Fischmeister, C.; Bruneau,
C. Eugenol as a Renewable Feedstock for the Production of
Polyfunctional Alkenes via Olefin Cross-Metathesis. RSC Adv. 2012,
2, 9584−9589.
́
́
(18) Ablialimov, O.; Keḑ ziorek, M.; Malinska, M.; Wozniak, K.;
Grela, K. Synthesis, Structure, and Catalytic Activity of New
Ruthenium(II) Indenylidene Complexes Bearing Unsymmetrical N-
Heterocyclic Carbenes. Organometallics 2014, 33, 2160−2171.
́
(19) Ablialimov, O.; Keḑ ziorek, M.; Torborg, C.; Malinska, M.;
́
Wozniak, K.; Grela, K. New Ruthenium(II) Indenylidene Complexes
Bearing Unsymmetrical N-Heterocyclic Carbenes. Organometallics
2012, 31, 7316−7319.
(36) Bantreil, X.; Nolan, S. P. Synthesis of N-Heterocyclic Carbene
Ligands and Derived Ruthenium Olefin Metathesis Catalysts. Nat.
Protoc. 2011, 6, 69.
́
(20) Małecki, P.; Gajda, K.; Ablialimov, O.; Malinska, M.; Gajda, R.;
́
Wozniak, K.; Kajetanowicz, A.; Grela, K. Hoveyda−Grubbs-Type
(37) For an elegant example where olefin isomerization of essential-
oil phenylpropenoids was deliberately used prior to metathesis step,
see: Higman, C. S.; de Araujo, M. P.; Fogg, D. E. Tandem Catalysis
Versus One-Pot Catalysis: Ensuring Process Orthogonality in the
Transformation of Essential-Oil Phenylpropenoids into High-Vvalue
Products via Olefin Isomerization-Metathesis. Catal. Sci. Technol.
2016, 6, 2077−2084.
Precatalysts with Unsymmetrical N-Heterocyclic Carbenes as
Effective Catalysts in Olefin Metathesis. Organometallics 2017, 36,
2153−2166.
(21) (a) For a discussion on selectivity problems in self-CM of α-
olefins, see: Rouen, M.; Queval, P.; Borre, E.; Falivene, L.; Poater, A.;
Berthod, M.; Hugues, F.; Cavallo, L.; Basle, O.; Olivier-Bourbigou,
H.; Mauduit, M. Selective Metathesis of α-Olefins from Bio-Sourced
Fischer−Tropsch Feeds. ACS Catal. 2016, 6, 7970−7976. (b) For
synthesis of other unsymmetrical 2,6-diisopropylphenyl NHC
precursors, see: Tarrieu, R.; Dumas, A.; Thongpaen, J.; Vives, T.;
́
(38) Małecki, P.; Kosnik, W.; Kajetanowicz, A., Grela, K.,
unpublished results.
(39) Banister, S. D.; Stuart, J.; Kevin, R. C.; Edington, A.;
Longworth, M.; Wilkinson, S. M.; Beinat, C.; Buchanan, A. S.;
Hibbs, D. E.; Glass, M.; Connor, M.; McGregor, I. S.; Kassiou, M.
Effects of Bioisosteric Fluorine in Synthetic Cannabinoid Designer
Drugs JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22,
APICA, and STS-135. ACS Chem. Neurosci. 2015, 6, 1445−1458.
(40) Hess, C.; Schoeder, C. T.; Pillaiyar, T.; Madea, B.; Muller, C. E.
Pharmacological Evaluation of Synthetic Cannabinoids Identified as
Constituents of Spice. Forensic Toxicol. 2016, 34, 329−343.
(41) Pace, J. M.; Tietje, K.; Dart, M. J.; Meyer, M. D. 3-
Cycloalkylcarbonyl Indoles as Cannabinoid Receptor Ligands. Patent
WO2006069196.
(42) For an application in the paper industry, see: Czaban, J.;
Schertzer, B. M.; Grela, K. Low Catalyst Loadings in Self-Metathesis
of 1-Dodecene. Adv. Synth. Catal. 2013, 355, 1997−2006.
(43) Hong, S. H.; Wenzel, A. G.; Salguero, T. T.; Day, M. W.;
Grubbs, R. H. Decomposition of Ruthenium Olefin Metathesis
Catalysts. J. Am. Chem. Soc. 2007, 129, 7961−7968.
(44) Hong, S. H.; Sanders, D. P.; Lee, C. W.; Grubbs, R. H.
Prevention of Undesirable Isomerization During Olefin Metathesis. J.
Am. Chem. Soc. 2005, 127, 17160−17161.
(45) Moise, J.; Arseniyadis, S.; Cossy, J. Cross-Metathesis between
α-Methylene-γ-butyrolactone and Olefins: A Dramatic Additive
Effect. Org. Lett. 2007, 9, 1695−1698.
(46) Gimeno, N.; Formentin, P.; Steinke, J. H. G.; Vilar, R.
Phenylphosphoric Acid as a New Additive to Inhibit Olefin
Isomerisation in Ruthenium-Catalysed Metathesis Reactions. Eur. J.
Org. Chem. 2007, 2007, 918−924.
(47) Thomas, R. M.; Keitz, B. K.; Champagne, T. M.; Grubbs, R. H.
Highly Selective Ruthenium Metathesis Catalysts for Ethenolysis. J.
Am. Chem. Soc. 2011, 133, 7490−7496.
́
́
Roisnel, T.; Dorcet, V.; Crevisy, C.; Basle, O.; Mauduit, M. Readily
Accessible Unsymmetrical Unsaturated 2,6-Diisopropylphenyl N-
Heterocyclic Carbene Ligands. Applications in Enantioselective
Catalysis. J. Org. Chem. 2017, 82, 1880−1887.
(22) Nelson, D. J.; Percy, J. M. Does the Rate of Competing
Isomerisation During Alkene Metathesis Depend on Pre-Catalyst
Initiation Rate? Dalton Trans. 2014, 43, 4674−4679.
(23) Thiel, V.; Hendann, M.; Wannowius, K.-J.; Plenio, H. On the
Mechanism of the Initiation Reaction in Grubbs−Hoveyda
Complexes. J. Am. Chem. Soc. 2012, 134, 1104−1114.
(24) Hejl, A. H. Controlling Olefin Metathesis Through Catalyst
and Monomer Design. Ph.D. Thesis, California Institute of
Technology, 2007.
́
́
́
(25) Grudzien, K.; Trzaskowski, B.; Smolen, M.; Gajda, R.; Wozniak,
K.; Grela, K. Hoveyda-Grubbs Catalyst Analogues Bearing the
Derivatives of N-Phenylpyrrol in the Carbene Ligand - Structure,
Stability, Activity and Unique Ruthenium-Phenyl Interactions. Dalton
Trans. 2017, 46, 11790−11799.
(26) For a decomposition of Hoveyda−Grubbs catalysts in solution
as a result of oxidation of the metal carbene, see: Kingsbury, J. S.;
Harrity, J. P. A.; Bonitatebus, P. J.; Hoveyda, A. H. A Recyclable Ru-
Based Metathesis Catalyst. J. Am. Chem. Soc. 1999, 121, 791−799.
(27) Bieniek, M.; Michrowska, A.; Usanov, D. L.; Grela, K. In an
Attempt to Provide a User’s Guide to the Galaxy of Benzylidene,
Alkoxybenzylidene, and Indenylidene Ruthenium Olefin Metathesis
Catalysts. Chem. -Eur. J. 2008, 14, 806−818.
(28) Thomas, R. M.; Fedorov, A.; Keitz, B. K.; Grubbs, R. H.
Thermally Stable, Latent Olefin Metathesis Catalysts. Organometallics
2011, 30, 6713−6717.
(29) Bohrsch, V.; Neidhofer, J.; Blechert, S. Diastereoselective Ring-
Rearrangement Metathesis. Angew. Chem., Int. Ed. 2006, 45, 1302−
1305.
(30) Kanai, K.; Erdoe, S.; Szappanos, A.; Bence, J.; Hermecz, I.;
Szvoboda, G.; Batorii, S.; Heja, G.; Balogh, M.; Horvath, A.; Sipos, J.;
Bartane Bodor, V.; Parkanyi, Z.; Lakics, V.; Molnar, P. Prolylendo-
peptidase Inhibitors. Patent US6191161B1.
(31) Bailey, G. A.; Lummiss, J. A. M.; Foscato, M.; Occhipinti, G.;
McDonald, R.; Jensen, V. R.; Fogg, D. E. Decomposition of Olefin
Metathesis Catalysts by Brønsted Base: Metallacyclobutane Deproto-
nation as a Primary Deactivating Event. J. Am. Chem. Soc. 2017, 139,
16446−16449.
(48) Rouen, M.; Borre, E.; Falivene, L.; Toupet, L.; Berthod, M.;
Cavallo, L.; Olivier-Bourbigou, H.; Mauduit, M. Cycloalkyl-Based
Unsymmetrical Unsaturated (U2)-NHC Ligands: Flexibility and
Dissymmetry in Ruthenium-Catalysed Olefin Metathesis. Dalton
Trans. 2014, 43, 7044−7049.
́
(49) Kajetanowicz, A.; Milewski, M.; Roginska, J.; Gajda, R.;
́
Wozniak, K. Hoveyda-Type Quinone-Containing Complexes −
Catalysts to Prevent Migration of the Double Bond under Metathesis
Conditions. Eur. J. Org. Chem. 2017, 2017, 626−638.
(50) For self-CM experiments showing problems related to quinone
(51) Kajetanowicz, A.; Sytniczuk, A.; Grela, K. Metathesis of
Renewable Raw Materials-Influence of Ligands in the Indenylidene
Type Catalysts on Self-Metathesis of Methyl Oleate and Cross-
Metathesis of Methyl Oleate with (Z)-2-Butene-1,4-diol diacetate.
Green Chem. 2014, 16, 1579−1585.
(32) Higman, C. S.; Plais, L.; Fogg, D. E. Isomerization During
Olefin Metathesis: An Assessment of Potential Catalyst Culprits.
ChemCatChem 2013, 5, 3548−3551.
(33) Higman, C. S.; Lanterna, A. E.; Marin, M. L.; Scaiano, J. C.;
Fogg, D. E. Catalyst Decomposition during Olefin Metathesis Yields
597
ACS Catal. 2019, 9, 587−598