Chemistry Letters Vol.33, No.10 (2004)
1323
and the reaction mechanisms. However, there are few examples
of ꢀ-allylpalladiums bearing different substituents. We could
use the novel allylic palladium intermediates, which are good
candidates to compare the electrophilicities of the allylic cations
without the any steric factors.
formed some transformations into more useful compounds.
The palladium-catalyzed Sonogashira and Stille coupling reac-
tions12 of the 2-p-methoxyphenylsulfonyloxypropene 2 pro-
duced the enyne 7a and diene 7b in good yields, respectively.
The intramolecular cyclization-coupling reactions of the 2-tosyl-
oxy-1,6-enynes prepared from 2 were examined. The yields and
stereoselectivities of the dienes 9b, 9c are excellent and no other
isomers were observed; however, 9a was contaminated with the
Z-isomer (10%).
OSO C H X
2
6
4
OSO C H X
2
6 4
oxidative addition
-
Cl
Cl
Pd
Ph P
PPh
3
3
This work was supported in part by a Grant-in-Aid for
Pharmaceutical Research (# 14572000) from the Ministry of
Education, Culture, Science, Sports, and Technology, Japan.
3
OSO C H X
2
6
4
OSO C H X
nucleophile
2
6
4
Nu
Nu
References and Notes
Pd(PPh )
3 2
1
S. A. Godleski, ‘‘Comprehensive Organic Synthesis,’’ ed. by
B. M. Trost, I. Fleming, and L. A. Paquette, Pergamon, New
York (1991), Vol. 4, p 585.
5
4
Scheme 2.
2
alkyl: E. Keinan and M. Sahai, J. Chem. Soc., Chem.
Commun., 1984, 648; aryl: M. Moreno-Manas, J. Ribas,
and A. Virgili, J. Org. Chem., 53, 5328 (1988); ester: D. J.
Collins, W. R. Jackson, and R. N. Timms, Tetrahedron Lett.,
17, 495 (1976); D. J. Collins, W. R. Jackson, and R. N.
Timms, Aust. J. Chem., 30, 2167 (1977); D. A. Hunt, J. M.
Quante, R. N. Tyson, and L. W. Dasher, J. Org. Chem.,
49, 5262 (1984); W. R. Jackson and J. U. G. Strauss, Aust.
J. Chem., 30, 553 (1977); W. R. Jackson and J. U. G. Strauss,
Tetrahedron Lett., 16, 2591 (1975); nitrile: J. Tsuji, H. Ueno,
Y. Kobayashi, and H. Okumoto, Tetrahedron Lett., 22, 2573
(1981); sulfanyl: S. A. Godleski and E. B. Villhauer, J. Org.
Chem., 49, 2246 (1984); S. A. Godleski and E. B. Villhauer,
J. Org. Chem., 51, 486 (1986); P(O)R2: Z. Zhu and X. Lu,
Tetrahedron Lett., 28, 1897 (1987).
Ar CO2Et
Ph
H
R
H
i
H
CO2Et
CO2Et
6a (Ar=Ph)(98%)
ii
ArSO3
H
6b (Ar=4-ClC6H4)
(95%)
H
CO2Et
7a (58%)
R=CO2Et
H
R
Ar=p-MeC6H4
2
iii
iv
H
OTs
R=SO2Ph
Ar=p-MeOC6H4
H
H
CO2Et
EtO2C
CO2Et
3
4
D. P. Grant, N. W. Murral, and A. S. Welch, J. Organomet.
Chem., 333, 403 (1987).
v
8 (94%)
H
SO2Ph
a) H. N. Nguyen, X. Huang, and S. L. Buchwald, J. Am.
Chem. Soc., 125, 11818 (2003). b) A. M. Roy and J. F.
Hartwig, J. Am. Chem. Soc., 125, 8704 (2003). c) D. Gelman
and S. L. Buchwald, Angew. Chem., Int. Ed., 42, 5993
(2003).
X. Huang, K. W. Anderson, D. Zim, L. Jiang, A. Klapars,
and S. L. Buchwald, J. Am. Chem. Soc., 125, 6653 (2003).
a) W. Scott and J. E. McMurry, Acc. Chem. Res., 21, 47
(1988). b) P. J. Stang, M. Hanack, and L. R. Subramanian,
Snthesis, 1982, 85. c) P. J. Stang, Acc. Chem. Res., 11, 107
(1978).
a) D. Z. Zim, V. Lando, J. Dupont, and A. L. Monteiro,
Org. Lett., 3, 3049 (2001). b) Y. Kobayashi and R. Nizojiri,
Tetrahedron Lett., 37, 8531 (1996).
a) J. Wu, Y. Liao, and Z. Yang, J. Org. Chem., 66, 3642
(2001). b) L. Shio, F. Chatreaux, and M. Klich, Tetrahedron
Lett., 41, 1543 (2000). c) J. Wu, L. Wang, R. Fathi, and
Z. Yang, Tetrahedron Lett., 43, 4395 (2002).
Ar
H
H
7b (48%)
H
9a (Ar=Ph) (71%)
9b (Ar=2-MeOC6H4) (92%)
9c (Ar=4-MeOC6H4) (90%)
EtO2C CO2Et
5
6
Scheme 3. Synthetic utilizations of 2-arylsulfonyloxypropenes,
Reagents: (i) ArB(OH)2/5 mol % Pd(PPh3)4/EtOH–benzene;
(ii) phenylacetylene/Pd(PPh3)4/Cul/benzene/rt; (iii) vinyltri-
butyltin/Pd(PPh3)4/LiBr; (iv) proparyl bromide/NaH/DMF/
0 ꢁC; v, ArB(OH)2/5 mol % PdCl2/PPh3/Na2CO3aq/EtOH–
toluene (1:1)/reflux/30 min.
7
8
Next, our attention focused on the synthetic utility based on
the cross-coupling reaction at the enol carbon of 3-chloro-2-p-
toluenesulfonyloxyprop-1-ene 2 with various nucleophiles in
the presence of tetrakis(triphenylphosphine)palladium. First,
we showed the reactions with arylboronic acids as described
in Scheme 3. The reactions cleanly occurred and afforded the
arylated products 6a, 6b in excellent yields. These results
indicate that the 3-chloro-2-tosyloxyprop-1-ene is a good tool
for the three component coupling reactions. Therefore, we fur-
ther investigated the one-pot alkylation–arylation reaction of
the selected 2-tosylate 1 with CH2(CO2Et)2/NaH/PhB(OH)2/
Na2CO3aq. The reaction conditions were investigated in detail
and the product 6a was obtained in 80% yield. We further per-
9
J. Wu, Q. Zhu, L. Wang, R. Fathi, and Z. Yang, J. Org.
Chem., 68, 670 (2003).
10 M. K. Lakshman, P. F. Thomson, M. A. Nuqui, J. H. Hilmer,
N. Sevova, and B. Boggess, Org. Lett., 4, 1479 (2002).
11 H. Mayr, B. Kempf, and A. R. Ofial, Acc. Chem. Res., 36, 66
(2003).
12 W. Scott and J. K. Stille, J. Am. Chem. Soc., 108, 3033
(1986).
Published on the web (Advance View) September 11, 2004; DOI 10.1246/cl.2004.1322