We thank the Turkish Council of Higher Education and
Sheffield University for financial support (to HT) and Dr.
Andrew J. Poss, Allied Chemicals, Buffalo, NY, for a generous
gift of NFSi.
Notes and references
1 G. M. Blackburn, Chem. Ind. (London), 1981, 134.
2 (a) G. M. Blackburn and D. E. Kent, J. Chem. Soc., Perkin Trans.
1, 1986, 913; (b) G. M. Blackburn and M. J. Parratt, J. Chem. Soc.,
Perkin Trans. 1, 1986, 1417; (c) G. M. Blackburn and M. J. Parratt,
J. Chem. Soc., Perkin Trans. 1, 1986, 1425; (d) G. M. Blackburn, D.
Brown, S. J. Martin and M. J. Parratt, J. Chem. Soc., Perkin Trans. 1,
1987, 181.
Scheme 3 a) TFA, rt, 2 h; b) BuLi, 1.1 equiv., THF, −78 ◦C, 0.5 h;
c) NFSi, 1.1 equiv., THF, −78 ◦C 45 min → rt; d) NaHCO3aq., rt; e)
TFA, 16 h, rt. (PMBn, p-methoxybenzyl).
3 A. H. Butt, J. M. Percy and N. S. Spencer, Chem. Commun.., 2000,
1691.
4 (a) A. J. Poss, Spec. Chem., 2003, 23, 36; (b) S. D. Taylor, C. Kotoris,
A. N. Dinaut and M.-J. Chen, Tetrahedron, 1998, 54, 1691.
5 (a) G. M. Blackburn, D. E. Kent and F. Kolkmann, J. Chem. Soc.,
Perkin Trans. 1, 1984, 1119; (b) G. M. Blackburn, F. Eckstein,
D. E. Kent and T. D. Perre´e, Nucleosides Nucleotides, 1985, 4, 165;
(c) G. M. Blackburn, T. D. Perre´e, A. Rashid, C. Bisbal and B. Lebleu,
Chem. Scr., 1986, 26, 21; (d) C. Bisbal, M. Silhol, M. Lemaˆıtre, B.
Bayard, T. Salehzada, B. Lebleu, T. D. Perre´e and G. M. Blackburn,
Biochemistry, 1987, 26, 51722; (e) J. Polga´r, P. Eichler, A. Greinacher
and K. J. Clemetson, Blood, 1998, 91, 549; (f) T. Yokomatsu, Y.
Hayakawa, T. Kihara, S. Koyanagi, S. Soeda, H. Shimeno and
S. Shibuya, Bioorg. Med. Chem., 2000, 8, 2571; (g) V. Spelta, A.
Mekhalfia, D. Rejman, M. Thompson, G. M. Blackburn and R. A.
North, Brit. J. Pharmacol., 2003, 140, 1027.
6 (a) M. S. Smyth, H. Ford and T. R. Burke, Tetrahedron Lett., 1992, 33,
4137; (b) Q. Wang, Z. Huang, C. Ramachandran, A. N. Dinaut and
S. D. Taylor, Bioorg. Med. Chem. Lett., 1998, 8, 345; (c) C. K. Lau,
C. I. Bayly, J. Y. Gauthier, C. S. Li, M. Therien, E. Asante-Appiah, W.
Cromlish, Y. Boie, F. Forghani, S. Desmarais, Q. Wang, K. Skorey,
D. Waddleton, P. Payette, C. Ramachandran, B. P. Kennedy and G.
Scapin, Bioorg. Med. Chem. Lett., 2004, 14, 1043.
7 (a) A. D. Borthwick and K. Biggadike, Tetrahedron, 1992, 48, 571;
(b) C. Audouard, J. Fawcett, G. A. Griffiths, J. M. Percy, S. Pintat
and C. A. Smith, Org. Biomol. Chem., 2004, 2, 528.
8 (a) M.-J. Chen and S. D. Taylor, Tetrahedron Lett., 1999, 40, 2669;
(b) J. Lapierre, V. Ahmed, M.-J. Chen, M. Ispahany, J. G. Guillemette
and S. D. Taylor, Bioorg. Med. Chem. Lett., 2004, 14, 151.
9 K. Sogabe, Y. Hasegawa, Y. Wada, T. Kitamura and S. Yanagida,
Chem. Lett., 2000, 944.
10 (a) K. J. Hansen, L. A. Clemen, M. E. Ellefson and H. O.
Johnson, Environ. Sci. Technol., 2001, 35, 766; (b) S. A. Tittlemier, L.
Edwards and K. Pepper, Organohalogen Compd., 2003, 62, 315; (c) B.
Boulanger, J. Vargo, J. L. Schnoor and K. C. Hornbuckle, Environ.
Sci. Technol., 2004, 38, 4064.
11 (a) T. H. Maren and C. Conroy, J. Biol. Chem., 1993, 268, 26233;
(b) T. H. Maren, US Pat 4746745, USA 1988.
Fig. 1 Plot of log[IC50] against pKa for the seven sulfonamides listed
in Table 1. Linear regression analysis (KaleidagraphTM) gives slope of
+0.59, R = 0.945.
ether (27%). These results constitute the first rational syn-
theses of monofluoro- and difluoroarenemethanesulfonamides
(Scheme 3).16
The pKa values of these and other select sulfonamides
(Table 1) were determined by potentiometric titration at 37 ◦C in
water at ionic strength 0.1. Partition coefficients, Pether, were mea-
sured◦spectroscopically for the equilibrium ether : water (pH 7.2)
at 25 C; and IC50 values for inhibition of carbonic anhydrase
(Bovine type II, Boehringer Mannheim) were determined at 3 ◦C
and pH 7.2 by pH stat titration.17 These data clearly show first,
that a-fluorination of sulfonamides directly delivers increased
sulfonamide acidity (Table 1). Secondly, there is a direct linear
correlation between pKa and log(IC50) over four decades of
acidity showing that a-fluorination of alkanesulfonamides is
directly linked to both of these values (Fig. 1). Notably, di-
fluorination of (8) increases its CAI 11-fold. Thirdly, since both
benzenefluoromethanesulfonamide (6) and benzenedifluoro-
methane-sulfonamide (11) have good water solubility (in excess
of 30 g dm−3 at pH 7.2), while their hydrophobicity has increased
significantly relative to that of (8), it is evident that there is
excellent scope for the further deployment of the CF2 function to
generate improved sulfonamide inhibitors of carbonic anhydrase
with adequate water-solubility for topical use in glaucoma
therapy.
12 (a) U. F. Mansoor, X.-R. Zhang and G. M. Blackburn, in The
Carbonic Anhydrases: New Horizons, eds. W. R. Chegwidden,
N. D. Carter and Y. H. Edwards, Birkhauser Verlag, Basel, 2000, 437;
(b) C. T. Supuran, D. Vullo, G. Manole, A. Casini and A. Scozzafava,
Curr. Med. Chem.: Cardiovasc. Hematol. Agents, 2004, 2, 49.
13 However, we have found that within a family of structurally closely-
related acetazolamide derivatives, increased CA inhibition is linked
directly to elevated sulfonamide pKa; X.-R. Zhang, Ph.D. Thesis,
Sheffield University, 1995.
Table 1 Physical data for a range of alkane- and arenealkane-
sulfonamides
14 G. A. Epling and M. E. Walker, Tetrahedron Lett., 1982, 23, 3843.
15 J. C. Sheehan, U. Zoller and D. Ben-Ishai, J. Org. Chem., 1974, 39,
1817.
16 Parts of this work formed a poster presentation at IUPAC ISBOC-7,
Sheffield, June 2004. Since the submission of this MS, related work
has been described elsewhere:B. Hill, Y. Liu and S. D. Taylor, Org.
Lett., 2004, 6, 4285.
17 R. E. Forster, in The Carbonic Anhydrases: cellular physiology and
molecular genetics, eds. S. J. Dodgson, R. E. Tashian, G. Gross and
N. D. Carter, Plenum Press, NY, 1991, 79.
Compound
pKa
IC50/nM
Pether
CH3SO2NH2
10.8 0.15
10.5 0.10
9.1 0.1
8.80 0.05
7.70 0.05
6.50 0.10
6.30 0.05
650 40
630 25
390 20
220 10
—
PhCH2SO2NH2 (8)
CH2ClSO2NH2
PhCHFSO2NH2 (6)
PhCF2SO2NH2 (11)
C4F9SO2NH2
1.2 0.20
—
5.65 0.20
13.0 0.20
—
58
<2
<2
4
CF3SO2NH2
0.003
2 2 6
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 2 2 5 – 2 2 6