E. Ramu et al. / Tetrahedron Letters 48 (2007) 7184–7190
7189
H C
AcO Zn
Ph
Supplementary data
HC
Ph
Zn(OAc)2 2H2O
OAc
2H2O
Supplementary data associated with this article can be
Ph
OAc
H
C
N
C
H
AcO Zn
2H2O
C
R
C
Ph
HOAc
Zn
C
2H2O
AcO
Ph
H
References and notes
H
C
N
1. Multicomponent reactions; Zhu, J., Bienayme, H., Eds.;
Wiley: Weinheim, 2005.
2. (a) Zani, L.; Bolm, C. Chem. Commun. 2006, 4263, and
references cited therein; (b) Wei, C.; Li, Z.; Li, C.-J.
Synlett 2004, 1472.
3. (a) Wakefield, B. J. Organolithium Methods in Organic
Synthesis; Academic Press: London, 1988; Chapter 3, pp
32; (b) Wakefield, B. J. Organomagnesium Methods in
Organic Synthesis; Academic Press: London, 1995; Chap-
ter 3, pp 46.
R
+
AcO Zn
C
Ph
N
2H2O
C
R
HOAc
O
C
+
R
H
N
H
Scheme 1.
4. (a) Harada, T.; Fujiwara, T.; Iwazaki, K.; Oku, A. Org.
Lett. 2000, 2, 1855; (b) Rosas, N.; Sharma, P.; Alvarez, C.;
Gomez, E.; Gutierrez, Y.; Mendez, M.; Toscano, R. A.;
Maldonado, L. A. Tetrahedron Lett. 2003, 44, 8019; (c)
Ding, C.-H.; Chen, D.-D.; Luo, Z.-B.; Dai, L.-X.; Hou,
X.-L. Synlett 2006, 1272.
5. Copper: (a) Shi, L.; Tu, Y. Q.; Wang, M.; Zhang, F. M.;
Fan, C. A. Org. Lett. 2004, 6, 1001; (b) Li, C.-J.; Wei, C.
Chem. Commun. 2002, 268; (c) Wei, C.; Li, C.-J. J. Am.
Chem. Soc. 2002, 124, 5638; (d) Park, S. B.; Alper, H.
Chem. Commun. 2005, 1315; (e) Black, D. A.; Arndtsen, B.
A. Tetrahedron 2005, 61, 11317; (f) Taylor, A. M.;
Schreiber, S. L. Org. Lett. 2006, 8, 143; (g) Gommermann,
N.; Knochel, P. Chem. Commun. 2004, 2324; (h) Gom-
mermann, N.; Koradin, C.; Polborn, K.; Knochel, P.
Angew. Chem., Int. Ed. 2003, 42, 5763; (i) Gommermann,
N.; Knochel, P. Synlett 2005, 2799; (j) Colombo, F.;
Benaglia, M.; Orlandi, S.; Usuelli, F.; Celentano, G.
J. Org. Chem. 2006, 71, 2064.
our catalytic system (entries 67–90). Trimerization of
aldehydes was never observed using Zn(OAc)2Æ2H2O
as catalyst, while it was a major limitation of the A3
coupling using Au8 and Cu5. Diisopropylamine and
cyclohexylamine were also tolerated (entries 54, 73 and
91) under the present conditions. Diallylamine, benzyl-
amine, dibenzylamine, dimethylamine and aniline
(entries 92–96) were not tolerated under the optimized
conditions. Other acetylenic substrates such as tri-
methylsilyl acetylene, propargyl alcohol and simple
aliphatic alkynes also underwent the reaction (entries
97–108). This indicates that the Zn(OAc)2Æ2H2O is also
compatible with both aromatic and aliphatic alkynes
as well.
A tentative mechanism is proposed involving the Lewis
acid (Zn(II)) assisted proton transfer with the alkyne to
form the corresponding zinc acetylide (Scheme 1). The
zinc acetylide intermediate thus generated reacts with
the iminium ion generated in situ from an aldehyde
and secondary amine to give the corresponding propar-
gylamine and regenerate the Zn(II) catalyst for further
reaction.
6. Silver: (a) Wei, C.; Li, Z.; Li, C.-J. Org. Lett. 2003, 5, 4473;
(b) Ji, J.-X.; Au-Yeung, T. T. L.; Wu, J.; Yip, C. W.;
Chan, A. S. C. Adv. Synth. Catal. 2004, 346, 42; (c) Yan,
W.; Wang, R.; Xu, Z.; Xu, J.; Lin, Li.; Shen, Z.; Zhou, Y.
J. Mol. Catal. A: Chem. 2006, 255, 81; (d) Li, Z.; Wei, C.;
Chen, L.; Varma, R. S.; Li, C.-J. Tetrahedron Lett. 2004,
45, 2443.
7. Iridium: Fischer, C.; Carreira, E. M. Org. Lett. 2001, 3,
4319.
In conclusion, we have successfully developed an effi-
cient protocol using Zn(OAc)2Æ2H2O as catalyst for the
one-pot synthesis of diverse propargylamines for the
first time in moderate to excellent yields. Notable fea-
tures of the protocol are: clean and simple reaction con-
ditions; use of a readily available and inexpensive
catalyst; tolerability of various functional groups and
aerobic conditions. We believe that this protocol will
be a valuable addition to modern synthetic methodolo-
gies for one-pot syntheses of propargylamines. An
asymmetric version of the same transformation is cur-
rently under investigation in our lab.
8. Gold: gold saline complex: (a) Lo, V. K.-Y.; Liu, Y.;
Wong, M.-K.; Che, C.-M. Org. Lett. 2006, 8, 1529; (b)
Wei, C.; Li, C.-J. J. Am. Chem. Soc. 2003, 125, 9584.
9. Zn: (a) Frantz, D. E.; Fassler, R.; Carreira, E. M. J. Am.
Chem. Soc. 1999, 121, 11245; (b) Pinet, S.; Pandya, S. U.;
Chavant, P. Y.; Ayling, A.; Vallee, Y. Org. Lett. 2002, 4,
1463; (c) Zani, L.; Alesi, S.; Cozzi, P. G.; Bolm, C. J. Org.
Chem. 2006, 71, 1558; (d) Lee, K.-Y.; Lee, C.-G.; Na, J.-
E.; Kim, J.-N. Tetrahedron Lett. 2005, 46, 69; (e) Jiang, B.;
Si, Y.-G. Tetrahedron Lett. 2003, 44, 6767; (f) Fischer, C.;
Carreira, E. M. Org. Lett. 2004, 6, 1497; (g) Jiang, B.; Si,
Y.-G. Angew. Chem., Int. Ed. 2004, 43, 216.
10. Zr: (a) Traverse, J. F.; Hoveyda, A. H.; Snapper, M. L.
Org. Lett. 2003, 5, 3273; (b) Akullian, L. C.; Snapper, M.
L.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4244.
11. Re: Kuninobu, Y.; Inoue, Y.; Takai, K. Chem. Lett. 2006,
35, 1376.
Acknowledgements
12. (a) Varala, R.; Sreelatha, N.; Adapa, S. R. J. Org. Chem.
2006, 71, 8283; (b) Varala, R.; Nasreen, A.; Ramu, E.;
Adapa, S. R. Tetrahedron Lett. 2007, 48, 69; (c) Varala,
R.; Sreelatha, N.; Adapa, S. R. Synlett 2006, 1549, and
R.V. and R.E. sincerely thank Dr. J. S. Yadav, Director,
IICT and CSIR, India, for providing necessary facilities
and funding.