Organic & Biomolecular Chemistry
Page 4 of 5
Journal Name
ARTICLE
DOI: 10.1039/C5OB00724K
gel using petroleum ether/EtOAc (100:1) as an eluent to give
the corresponding products 3aa–3rb.
Notes and references
Key Laboratory of Functional Molecular Solids, Ministry of Education,
Anhui Laboratory of MoleculeꢀBased Materials, College of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000,
People’s Republic of China. Eꢀmail: zhangwu@mail.ahnu.edu.cn
Tel: +86ꢀ553ꢀ3883513; fax: +86ꢀ553ꢀ3869310
†
Electronic Supplementary Information (ESI) available: Catalyst
characterization, analytic data, images of 1H and 13C NMR of all products
and other electronic format. See DOI: 10.1039/b000000x/
1
(a) Z. Brzozowski, F. Saczewski and M. Gdaniec, Eur. J. Med. Chem,
Scheme 3. Plausible Mechanism for synthesis of 1,3,5ꢀTriazine
2000, 35, 1053ꢀ1064; (b) F. Saczewski, A. Bulakowska and P.
Bednarski, Eur. J. Med. Chem, 2006, 41, 219ꢀ225; (c) R. Menicagli,
S. Samaritani and G. Signore, J. Med. Chem, 2004, 47, 4649ꢀ4652;
(d) A. Kumar, K. Srivastava and P. M. S. Chauhan, Bioorg. Med.
of 1,3,5ꢀtriazine derivatives has been successfully developed
based on direct oxidizing coupling reaction between
benzamidine hydrochlorides and alcohols exploiting Cu(OAc)2
as catalyst. The obvious benefit of this approach is its tolerance
to a broad range of both aromatic and fatty alcohols. In
addition, the facile reaction atmosphere of air and no need of
ligands make this approach highly practical for industrial
manufacture. Further studies for the construction of diverse
heterocyclic compounds relying on present strategy are ongoing
in our lab.
Chem
. Lett, 2008, 18, 6530ꢀ6533; (e) K. Srinivas, U. Srinivas and K.
Bhanuprakash, Eur. J. Med. Chem, 2006, 41, 1240ꢀ1246; (f) V.
Garaj, L. Puccetti and G. Fasolis, Bioorg. Med. Chem. Lett, 2005, 15
3102ꢀ3108.
,
,
2
3
(a) T. Konstantinova and P. Petrova, Dyes and Pigments, 2002, 52
115ꢀ120; (b) S. Um, Y.H. Kang and J. K. Lee, Dyes and Pigments
2007, 75, 681ꢀ686; (c) A. Garcia, B. Insuasty and N. Martin, Org.
Lett 2009, 13 5398ꢀ5401; (d) A. P. Melissaris and J. A.
,
,
,
Mikroyannidis, Polymer bulletin (Burlin), 1987, 18, 1ꢀ8.
Acknowledgements
(a) C. F. Ye, H. X. Gao, J. A. Boatz and J. M. Shreeve, Angew.
Chem. Int. Ed, 2006, 45, 7262ꢀ7265; (b) A. Hammerl, T. M. Klapotke
and R. Rocha, Eur. J. Inor. Chem, 2006, 16, 2210ꢀ2228; (c) K.
We gratefully appreciate the National Natural Science
Foundation of China (NSFC Nos. 20972002 and 21272006) for
financial support.
Banerk, Y. Joo and T. Ruffer, Angew. Chem. Int. Ed, 2007, 46
,
1168ꢀ1171; (d) A. Fischer, M. Antonietti and A. Thomas, Adv. Mater
2007, 19, 264ꢀ267.
,
Experimental
4
(a) D. Janietz and M. Bauer, Synthesis, 1993, 1, 33ꢀ34; (b) A. L.
General information
Isfahani, M. B. Iraj, V. Mirkhani, M. Moghadam, S. Tangestaninejad
and R. Kia, Adv. Synth. Catal, 2013, 355, 957ꢀ972.
F. Xu, J. H. Sun, H. B. Yan and Q. Shen, Synthetic Communications
2000, 30, 1017ꢀ1022.
All starting materials and reagents were commercially available
and used directly without further purification. All known
products gave satisfactory analytical data by NMR spectra,
which corresponding to the reported literature values. Unknown
compounds were confirmed by HRMS additionally. NMR
spectra were determined at room temperature on Bruker
Avanceꢀ300 or Bruker Avanceꢀ500 at 300 MHz or 500 MHz
with tetramethylsilane (TMS) as an internal standard. Chemical
shifts are given in δ relative to TMS, the coupling constants J
are given in Hz. Highꢀresolution mass spectral (HRMS) were
obtained using APCI, ESI or EI in positive mode.
5
6
7
,
A. V. Dolzhenko, S. A. Kalinina and D. V. Kalinin, RSC Adv, 2013,
3, 15850ꢀ15855.
N. Li, M. S. Tu, B. Jiang, X. Wang and S. J. Tu, Tetrahedron Letters
2013, 54, 1743ꢀ1746.
,
8
9
S. Biswas and S. Batra, Eur. J. Org. Chem, 2012, 18, 3492ꢀ3499.
F. Xie, M. M. Chen, X. T. Wang, H. F. Jiang and M. Zhang, Org.
Biomol. Chem, 2014, 12, 2761ꢀ2768.
10 (a) Y. X. Jia and E. P. Kündig, Angew. Chem. Int. Ed, 2009, 48
,
1636ꢀ1639; (b) G. Brasche and S. L. Buchwald, Angew. Chem. Int.
Ed, 2008, 47, 1932ꢀ1934; (c) H. G. Wang, Y. Wang, D. D. Liang, L.
Typical experimental procedure for the synthesis of 3
A mixture of alcohol
1 (0.6 mmol), amidine hydrochloride 2
Y. Liu, J. C. Zhang and Q. Zhu, Angew. Chem. Int. Ed, 2011, 50
,
(1.0 mmol), NaCO3 (1.0 mmol, 1.0 equiv) and Cu(OAc)2 (10
mol %) was stirred in toluene (2.5 mL) under reflux in air for
24 h. The resulting mixture was cooled to room temperature
and then extracted it for several times with EtOAc (10 mL) and
brine (5 mL). The organic phases were combined and dried
with anhydrous Na2SO4 and evaporated under vacuum. The
crude product was purified by column chromatography on silica
5678ꢀ5681; (d) A. Perry and R. J. K. Taylor, Chem. Commun, 2009,
22, 3249ꢀ3251.
11 (a) S. E. Allen, R. R. Walvoord, R. PadillaꢀSalinas and M. C.
Kozlowski, Chem. Rev, 2013, 113, 6234ꢀ6458; (b) S. R. Chemler,
Science, 2013, 341, 624ꢀ626; (c) L. Zhang, G. Y. Ang and S. Chiba,
Org. Lett, 2010, 12, 3682ꢀ3685; (d) J. E. M. N. Klein, A. Perry, D. S.
Pugh and R. J. K. Taylor, Org. Lett, 2010, 12, 3446ꢀ3449; (e) G.
This journal is © The Royal Society of Chemistry 2012J. Name., 2012, 00, 1ꢀ3 | 4