Anomeric Effects in Protonated Glucosylanilines
A R T I C L E S
Scheme 1. Acid Dissociations of R and â
Tetramethylglucopyranosylanilinium Ions (R ) CH3)
concluded that coupling constants could not measure xylo-
sylimidazole populations reliably. Additional experimental
evidence is sparse,9 although geometric changes are consistent
with an enhanced normal anomeric effect, not a reverse one.10
Molecular orbital calculations are not conclusive,11 because it
is difficult to separate the RAE from steric effects and hydrogen
bonding, which also favor an equatorial form.
It is important to understand the conformational behavior of
sugar derivatives with cationic groups at the anomeric center.
Many biomolecules have cationic or protonatable heterocyclic
bases attached to a sugar, the most familiar being NAD+ and
the conjugate acids of nucleosides. Many other sugar derivatives
and analogues react only when protonated, and the conformation
of such activated intermediates is crucial for assessing stereo-
electronic effects.12 Moreover, understanding the conformational
behavior of such cations can guide stereospecific syntheses of
sugar derivatives.13 It must be noted though that our concern is
only with the endo anomeric effect, not the exo, which affects
the conformation about the exocyclic C1-X bond of the
unprotonated species and is operative in both R and â anomers.14
We therefore had reinvestigated glycopyranosylimidazoles.
The RAE would be manifested as an increase in the proportion
of the â anomer on N-protonation of an equilibrating mixture.
Although glycosylimidazoles are configurationally stable and
do not equilibrate,15 the increase can be evaluated indirectly,
because a corollary of the RAE is that the â anomer must be
more basic than the R. Instead, we found the opposite.16
Similarly, the greater basicity of R-glucosylamine, measured
by direct titration,17 can now be recognized as being inconsistent
with the RAE.
Scheme 2. Acid Dissociations of Cis and Trans
4-tert-Butylcyclohexylanilinium Ions (R ) (CH3)3C)
Glucosylanilines. This paper compares the anomeric equi-
libria of protonated and unprotonated tetra-O-methylglucosy-
lanilines (2, R ) CH3). Again, the RAE would be manifested
as an increase in the proportion of the â anomer on N-
protonation of an equilibrating mixture. In terms of Scheme 1,
+
this means that Ke would be greater than Ke. It must be
recognized that Scheme 1 constitutes a thermodynamic cycle.
It then follows that Ke+/Ke must equal the ratio of acidity
R
â
(7) Vaino, A. R.; Chan, S. S. C.; Szarek, W. A.; Thatcher, G. R. J. J. Org.
Chem. 1996, 61, 4514. Vaino, A. R.; Szarek, W. A. J. Org. Chem. 2001,
66, 1097.
constants, Ka /Ka . Thus, the RAE would equivalently be
manifested as a greater acidity of the R anomer or a greater
basicity of the â.
(8) Perrin, C. L.; Armstrong, K. B. J. Am. Chem. Soc. 1993, 115, 6825.
(9) Mikoajczyk, M.; Graczyk, P.; Wieczorek, M. W.; Bujacz, G. Angew. Chem.,
Int. Ed. Engl. 1991, 30, 578. Graczyk, P. P.; Mikolajczyk, M. Phosphorus,
Sulfur Silicon Relat. Elem. 1993, 78, 313. Juaristi, E.; Cuevas, G. J. Am.
Chem. Soc. 1993, 115, 1313. Thibaudeau, C.; Plavec, J.; Watanabe, K. A.;
Chattopadhyaya, J. J. Chem. Soc., Chem. Commun. 1994, 537. Jones, P.
G.; Kirby, A. J.; Komarov, I. V.; Wothers, P. D. J. Chem. Soc., Chem.
Commun. 1998, 1695.
(10) Kennedy, J.; Wu, J.; Drew, K.; Carmichael, I.; Serianni, A. S. J. Am. Chem.
Soc. 1997, 119, 8933. Alder, R. W.; Carniero, T. M. G.; Mowlam, R. W.;
Orpen, A. G.; Petillo, P. A.; Vachon, D. J.; Weisman, G. R.; White, J. M.
J. Chem. Soc., Perkin Trans. 2 1999, 589.
(11) Cramer, C. J. J. Org. Chem. 1992, 57, 7034. Chan, S. S. C.; Szarek, W.
A.; Thatcher, G. R. J. J. Chem. Soc., Perkin Trans. 2 1995, 45. Cramer, C.
J. J. Mol. Struct. (THEOCHEM) 1996, 370, 135. Ganguly, B.; Fuchs, B. J.
Org. Chem. 1997, 62, 8892. Cloran, F.; Zhu, Y. P.; Osborn, J.; Carmichael,
I.; Serianni, A. S. J. Am. Chem. Soc. 2000, 122, 6435.
(12) Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry; Perga-
mon: Oxford, 1983. Sinnott, M. L. AdV. Phys. Org. Chem. 1988, 24, 113.
Perrin, C. L.; Arrhenius, G. M. L. J. Am. Chem. Soc. 1982, 104, 2839.
Perrin, C. L.; Nun˜ez, O. J. Am. Chem. Soc. 1986, 108, 5997. Perrin, C. L.;
Thoburn, J. D. J. Am. Chem. Soc. 1993, 115, 3140. Perrin, C. L.; Engler,
R. E. J. Am. Chem. Soc. 1997, 119, 585. Perrin, C. L.; Engler, R. E.; Young,
D. B. J. Am. Chem. Soc. 2000, 122, 4877. Perrin, C. L.; Young, D. B. J.
Am. Chem. Soc. 2001, 123, 4446. Perrin, C. L.; Young, D. B. J. Am. Chem.
Soc. 2001, 123, 4451. Alabugin, I. V.; Zeidan, T. A. J. Am. Chem. Soc.
2002, 124, 3175. Perrin, C. L. Acc. Chem. Res. 2002, 35, 28.
(13) West, A. C.; Schuerch, C. J. Am. Chem. Soc. 1973, 95, 1333. Bailey, W.
F.; Eliel, E. L. J. Am. Chem. Soc. 1974, 96, 1798. Ratcliffe, A. J.; Fraser-
Reid, B. J. Chem. Soc., Perkin Trans. 1 1990, 747. Mereyala, H. B.; Reddy,
G. V. Tetrahedron 1991, 47, 6435. Sun, L. H.; Li, P.; Zhao, K. Tetrahedron
Lett. 1994, 35, 7147. Hadd, M. J.; Gervay, J. Carbohydr. Res. 1999, 320,
61. Garcia, B. A.; Gin, D. Y. J. Am. Chem. Soc. 2000, 122, 4269. Wipf,
P.; Reeves, J. T. J. Org. Chem. 2001, 66, 7910. Che´ry, F.; Cassel, S.;
Wessel, H. P.; Rollin, P. Eur. J. Org. Chem. 2002, 171.
Steric hindrance to ionic solvation must also be taken into
account in comparing protonated and unprotonated glucosyla-
nilines. This phenomenon is well established, as in the basicities
of the methylated amines and the acidities of alcohols.18 For
imidazolyl, the steric contribution is small,19 because protonation
occurs at a distant nitrogen. Of course this cannot be general,
and steric hindrance to ionic solvation could strongly disfavor
protonation of the R anomer of 2.
The extent to which the positive charge of NH2Ar+ disfavors
an axial stereoisomer can be assessed with 4-tert-butylcyclo-
hexylanilines (3). A measure of steric hindrance to ionic
solvation is ∆A, the difference between the A values (eq 1) of
NH2Ar+ and NHAr substituents. This is equal to -RT ln(Ke
/
+
+
Ke), where Ke and Ke are equilibrium constants in Scheme 2.
Because this scheme likewise constitutes a thermodynamic
cis
cycle, ∆A must also equal the ratio of acidity constants, Ka
/
(14) Batchelor, R. J.; Green, D. F.; Johnston, B. D.; Patrick, B.; Pinto, B. M.
Carbohydr. Res. 2001, 330, 421.
(15) Bourne, E. J.; Finch, P.; Nagpurkar, A. G. J. Chem. Soc., Perkin Trans. 1
1972, 2202.
(16) Fabian, M. A.; Perrin, C. L.; Sinnott, M. L. J. Am. Chem. Soc. 1994, 116,
8398. Perrin, C. L.; Fabian, M. A.; Brunckova, J.; Ohta, B. K. J. Am. Chem.
Soc. 1999, 121, 6911.
(17) Blasko´, A.; Bunton, C. A.; Bunel, S.; Ibarra, C.; Moraga, E. Carbohydr.
Res. 1997, 298, 163.
(18) Aue, D. H.; Webb, H. M.; Bowers, M. T. J. Am. Chem. Soc. 1976, 98,
318. Bartmess, J. E.; Scott, J. A.; McIver, R. T., Jr. J. Am. Chem. Soc.
1979, 101, 6046.
(19) Perrin, C. L.; Fabian, M. A.; Armstrong, K. B. J. Org. Chem. 1994, 59,
5246.
9
J. AM. CHEM. SOC. VOL. 125, NO. 29, 2003 8847