ORGANIC
LETTERS
2003
Vol. 5, No. 21
3871-3873
The Pt-Catalyzed Carboselenation of
Alkynes by Selenoesters
Takayoshi Hirai, Hitoshi Kuniyasu,* Tomohiro Kato, Yumi Kurata, and
Nobuaki Kambe*
Department of Molecular Chemistry & Frontier Research Center, Graduate School of
Engineering, Osaka UniVersity, Suita, Osaka 565-0871, Japan
kuni@chem.eng.osaka-u.ac.jp; kambe@chem.eng.osaka-u.ac.jp
Received July 29, 2003
ABSTRACT
The Pt-catalyzed carboselenation of terminal alkynes with selenoesters provided vinylselenides regio- and stereoselectively in moderate yields.
Although the transition-metal-catalyzed additions of het-
eroatom-containing compounds to C-C unsaturated com-
pounds represented by hydrosilylation have been studied for
more than three decades,1 the utilities of organochalcogenides
with Y-X bonds (Y ) SR1, SeR1; X ) element or functional
group) have been recognized only lately.2 We have recently
demonstrated that basic knowledge of the ligand behavior
of thiolates on Pd and Pt complexes3 could be exploited to
develop new reactions, that is, the Pt-catalyzed carbothiola-
tion of alkynes RCCH (1).4 The concept we have elucidated
is quite simple: (1) formation of an intermediate with the
S-Pt-C fragment patterned after Pd-catalyzed S-C bond-
forming cross-coupling reaction;5 (2) insertion of 1 into the
S-Pt bond to furnish a complex with a vinyl-C-Pt-C
fragment; and (3) vinyl-C-C bond-forming reductive
elimination with regeneration of Pt(0) (Scheme 1, Y ) SR1).
Herein we wish to report on the Pt-catalyzed carboselenation
of 1, an extension of the protocol to selenium analogues (Y
) SeR1).6
Scheme 1. Schematic Strategy for Carbothiolation and
Carboselenation of 1
First, the reaction of 1-octyne (1a) (1.2 mmol) with PhSeC-
(O)Ph (2a) (1.0 mmol) was carried out in the presence 0.05
mmol of Pt(PPh3)4 in toluene (0.5 mL) under vigorous reflux
conditions for 20 h. The crude reaction mixture was then
subjected to preparative TLC. The anticipated Z-(n-C6H13)-
(PhSe)CdCH(Ph) (3a),7 the product of decarbonylatiVe
arylselenation, was isolated in 89% yield (entry 1 of Table
1). Neither the regio- and stereoisomers of 3a nor PhSePh
(1) (a) Ojima, I.; Li, Z.; Zhu, J. In The Chemistry of Organic Sillicon
Compounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley-Intercience: Chish-
ester, UK, 1989; Chapter 29. (b) Collman, J. P.; Hegedus, L. S.; Norton, J.
R.; Finke, R. G. Principles and Applications of Organotransition Metal
Chemistry; University Science Books: Mill Valley, CA, 1987; p 523.
(2) Kuniyasu, H. In Catalytic Heterofunctionalization; Togni, A., Gru¨tz-
macher, H. Eds.; Wiley: Zu¨rich, Switzerland, 2001; p 217.
(3) (a) Kuniyasu, H.; Sugoh, K.; Moon, S.; Kurosawa, H. J. Am. Chem.
Soc. 1997, 119, 4669. (b) Kuniyasu, H.; Ohtaka, A.; Nakazono, T.;
Kinomoto, M.; Kurosawa, H. J. Am. Chem. Soc. 2000, 122, 2375.
(4) (a) Kuniyasu, H.; Kurosawa, H. Chem. Eur. J. 2002, 8, 2660. (b)
Sugoh, K.; Kuniyasu, H.; Sugae, T.; Ohtaka, A.; Takai, Y.; Tanaka, A.;
Machino, C.; Kambe, N.; Kurosawa, H. J. Am. Chem. Soc. 2001, 123, 5108.
(5) Kondo, T.; Mitsudo, T. Chem. ReV. 2000, 100, 3205.
(6) The Pd-catalyzed Se-C bond-forming reductive elimination has been
reported. (a) Kuniyasu, H.; Ogawa, A.; Miyazaki, S.; Ryu, I.; Kambe, N.;
Sonoda, N. J. Am. Chem. Soc. 1991, 113, 9796. (b) Beletskaya, I. P.; Sigeev,
A. S.; Peregudov, A. S.; Petrovskii, P. V. J. Organomet. Chem. 2000, 605,
96. (c) Nishiyama, Y.; Tokunaga, K.; Sonoda, N. Org. Lett. 1999, 1, 1725.
(7) The stereo- and regiochemistry of 3a were determined by NOE and
the value of JC-Se, respectively. Cullen, E. R.; Guziec, F. S.; Murphy, C.
J.; Wong, T. C.; Andersen, K. K. J. Chem. Soc., Perkin Trans. 2 1982,
473.
10.1021/ol0354223 CCC: $25.00 © 2003 American Chemical Society
Published on Web 09/16/2003